Learn R Programming

⚠️There's a newer version (1.1.9.1) of this package.Take me there.

SpatioTemporal (version 0.9.2)

Spatio-Temporal Model Estimation

Description

Utilities that estimate, predict and cross-validate the spatio-temporal model developed for MESA Air.

Copy Link

Version

Install

install.packages('SpatioTemporal')

Monthly Downloads

49

Version

0.9.2

License

GPL-2

Maintainer

Johan Lindstrom

Last Published

March 8th, 2012

Functions in SpatioTemporal (0.9.2)

SVD.smooth.cv

Cross-validation for Smooth Basis Functions
estimateCV

Cross-Validated Estimation and Prediction
sumLogDiag

Sum the Logarithm of Diagonal Elements
calc.tF.times.mat

Compute Matrix Productes Involving the Smooth Trends
plotMonitoringLoc

Plot of Observation Locations and Dates
cond.expectation

Computes Conditional Expectation for Unobserved Locations
calc.smooth.trends

Smooth Basis Functions for a mesa.data Structure
block.mult

Multiplication of Block Diagonal Matrix and Vector
loglike

Compute the Log-likelihood for the Spatio-Temporal Model
combineMesaData

Merges two Data Objects.
plotCV

Illustrates Predictions and Cross-validated Predictions
default.LUR.list

Error Checking and Default Values for Covariate Selection
CVresiduals.qqnorm

QQ-norm and Scatterplots for Data and Residual Analysis
SVD.miss

Replace Missing Values in a Data Matrix Using Iterative svd.
loglike.var.names

Create Names for Log-likelihood Parameters
construct.LUR.basis

Extract and Create Covariate Matrices
mesa.data.raw

Example of raw data
SVD.smooth

Smooth Basis Functions for Data Matrix with Missing Values
createCV

Define Cross-Validation Groups
compute.ltaCV

Computes the long term average for each sites.
fit.mesa.model

Estimation of the Spatio-Temporal Model
dot.prod

Computes Inner Product and Squared 2-norm
loglike.grad

Compute Gradient and Hessian for the Log-likelihood
drop.observations

Drop Observations from mesa.data.model
gen.gradient

Compute Finite Difference Gradient and Hessians.
SpatioTemporal-package

Spatio-Temporal Modelling
calc.iS.X

Matrix Multiplication with Block Matrices
mesa.data

Example of a mesa.data Structure
make.sigma.nu

Crete (Cross)-Covariance Matrices for the Residual Field
remove.ST.mean

Mean-Centre the Spatio-Temporal Covariate
get.params

Extract Parameters from a Vector
mesa.data.res

Results of some time consuming code.
detrend.data

make.sigma.B

Create Covariance Matrix for the beta-Fields
make.sigma.B.full

The Covariance Matrix for Temporal Trends and beta Fields.
summaryStatsCV

Computes Summary Statistics for Cross-validation
create.data.model

Creates the mesa.data.model structure; selection of model covariates
plotMesaData

Illustrates the Observations as Timeseries
create.data.matrix

Create a Data Matrix from a mesa.data Structure
printMesaDataNbrObs

Summary of Locations and Time Points
mesa.data.model

Example of a mesa.data.model Structure
makeCholBlock

Computations for Block Diagonal Matrices
tstat

Basic diagnostic statistics and summaries for SpatioTemporal model output.
setupSTdataset

predictNaive

Naive Temporal Predictions
simulateMesaData

Simulate Data from the Spatio-Temporal Model
loglike.dim

Dimensions of the Model Data Structure
run.MCMC

MCMC Inference of Parameters in the Spatio-Temporal Model.