Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (1.1.9.1) of this package.
Take me there.
SpatioTemporal (version 0.9.2)
Spatio-Temporal Model Estimation
Description
Utilities that estimate, predict and cross-validate the spatio-temporal model developed for MESA Air.
Copy Link
Link to current version
Version
Version
1.1.9.1
1.1.9
1.1.7
1.1.2
1.1.1
0.9.2
0.9.0
Install
install.packages('SpatioTemporal')
Monthly Downloads
49
Version
0.9.2
License
GPL-2
Maintainer
Johan Lindstrom
Last Published
March 8th, 2012
Functions in SpatioTemporal (0.9.2)
Search all functions
SVD.smooth.cv
Cross-validation for Smooth Basis Functions
estimateCV
Cross-Validated Estimation and Prediction
sumLogDiag
Sum the Logarithm of Diagonal Elements
calc.tF.times.mat
Compute Matrix Productes Involving the Smooth Trends
plotMonitoringLoc
Plot of Observation Locations and Dates
cond.expectation
Computes Conditional Expectation for Unobserved Locations
calc.smooth.trends
Smooth Basis Functions for a mesa.data Structure
block.mult
Multiplication of Block Diagonal Matrix and Vector
loglike
Compute the Log-likelihood for the Spatio-Temporal Model
combineMesaData
Merges two Data Objects.
plotCV
Illustrates Predictions and Cross-validated Predictions
default.LUR.list
Error Checking and Default Values for Covariate Selection
CVresiduals.qqnorm
QQ-norm and Scatterplots for Data and Residual Analysis
SVD.miss
Replace Missing Values in a Data Matrix Using Iterative svd.
loglike.var.names
Create Names for Log-likelihood Parameters
construct.LUR.basis
Extract and Create Covariate Matrices
mesa.data.raw
Example of raw data
SVD.smooth
Smooth Basis Functions for Data Matrix with Missing Values
createCV
Define Cross-Validation Groups
compute.ltaCV
Computes the long term average for each sites.
fit.mesa.model
Estimation of the Spatio-Temporal Model
dot.prod
Computes Inner Product and Squared 2-norm
loglike.grad
Compute Gradient and Hessian for the Log-likelihood
drop.observations
Drop Observations from mesa.data.model
gen.gradient
Compute Finite Difference Gradient and Hessians.
SpatioTemporal-package
Spatio-Temporal Modelling
calc.iS.X
Matrix Multiplication with Block Matrices
mesa.data
Example of a mesa.data Structure
make.sigma.nu
Crete (Cross)-Covariance Matrices for the Residual Field
remove.ST.mean
Mean-Centre the Spatio-Temporal Covariate
get.params
Extract Parameters from a Vector
mesa.data.res
Results of some time consuming code.
detrend.data
Removes the estimated time-trend from the observations in a
mesa.data
object.
make.sigma.B
Create Covariance Matrix for the beta-Fields
make.sigma.B.full
The Covariance Matrix for Temporal Trends and beta Fields.
summaryStatsCV
Computes Summary Statistics for Cross-validation
create.data.model
Creates the mesa.data.model structure; selection of model covariates
plotMesaData
Illustrates the Observations as Timeseries
create.data.matrix
Create a Data Matrix from a mesa.data Structure
printMesaDataNbrObs
Summary of Locations and Time Points
mesa.data.model
Example of a mesa.data.model Structure
makeCholBlock
Computations for Block Diagonal Matrices
tstat
Basic diagnostic statistics and summaries for SpatioTemporal model output.
setupSTdataset
Creates the data structure that is then used to build specific models via
create.data.model
.
predictNaive
Naive Temporal Predictions
simulateMesaData
Simulate Data from the Spatio-Temporal Model
loglike.dim
Dimensions of the Model Data Structure
run.MCMC
MCMC Inference of Parameters in the Spatio-Temporal Model.