## Not run:
# library(oce)
# ## Example 1.
# d <- read.csv("towyow.csv", header=TRUE)
# towyow <- as.ctd(d$salinity, d$temperature, d$pressure)
#
# casts <- ctdFindProfiles(towyow)
# par(mfrow=c(length(casts), 3))
# for (cast in casts) {
# plotProfile(cast, "salinity")
# plotProfile(cast, "temperature")
# plotTS(cast, type='o')
# }
#
# ## Example 2.
# ## Using a moving average to smooth pressure, instead of the default
# ## smooth.spline() method. This avoids a tendency of smooth.spline()
# ## to smooth out the profiles in a tow-yo with many (dozens or more) cycles.
# movingAverage <- function(x, n = 11, ...)
# {
# f <- rep(1/n, n)
# stats::filter(x, f, ...)
# }
# casts <- ctdFindProfiles(towyo, smoother=movingAverage)
#
# ## Example 3: glider data, with profiles separated by >10dbar jump.
# breaks <- which(diff(ctd[["pressure"]]) > 10))
# profiles <- ctdFindProfiles(ctd, breaks=breaks)
# ## End(Not run)
Run the code above in your browser using DataLab