# NOT RUN {
bp <- matrix(0, 6, 6)
bp[2,5] <- 0.5
bp[5,2] <- 0.8
bp[2,1] <- bp[3,2] <- bp[5,4] <- bp[6,5] <- 0.5
stdev <- rep(0.025, 6)
## Use R/qtl routines to simulate map and genotypes.
set.seed(34567899)
mymap <- sim.map(len = rep(100,20), n.mar = 10, eq.spacing = FALSE,
include.x = FALSE)
mycross <- sim.cross(map = mymap, n.ind = 200, type = "f2")
mycross <- sim.geno(mycross, n.draws = 1)
## Use R/qdg routines to produce QTL sample and generate phenotypes.
cyclicc.qtl <- generate.qtl.markers(cross = mycross, n.phe = 6)
mygeno <- pull.geno(mycross)[, unlist(cyclicc.qtl$markers)]
cyclicc.data <- generate.qtl.pheno("cyclicc", cross = mycross, burnin = 2000,
bq = c(0.2,0.3,0.4), bp = bp, stdev = stdev, geno = mygeno)
save(cyclicc.qtl, cyclicc.data, file = "cyclicc.RData", compress = TRUE)
data(cyclicc)
out <- qdg(cross=cyclicc.data,
phenotype.names=paste("y",1:6,sep=""),
marker.names=cyclicc.qtl$markers,
QTL=cyclicc.qtl$allqtl,
alpha=0.005,
n.qdg.random.starts=1,
skel.method="pcskel")
gr <- graph.qdg(out)
plot(gr)
# }
Run the code above in your browser using DataLab