Learn R Programming

metafor (version 1.9-7)

dat.collins1985a: Studies on the Treatment of Upper Gastrointestinal Bleeding by a Histamine H2 Antagonist

Description

Results from studies examining the effectiveness of histamine H2 antagonists (cimetidine or ranitidine) in treating patients with acute upper gastrointestinal hemorrhage.

Usage

dat.collins1985a

Arguments

format

The data frame contains the following columns: lll{ id numeric study number trial character first author of trial year numeric year of publication ref numeric reference number trt character C = cimetidine, R = ranitidine ctrl character P = placebo, AA = antacids, UT = usual treatment nti numeric number of patients in treatment group b.xti numeric number of patients in treatment group with persistent or recurrent bleedings o.xti numeric number of patients in treatment group in need of operation d.xti numeric number of patients in treatment group that died nci numeric number of patients in control group b.xci numeric number of patients in control group with persistent or recurrent bleedings o.xci numeric number of patients in control group in need of operation d.xci numeric number of patients in control group that died }

source

Collins, R., & Langman, M. (1985). Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. New England Journal of Medicine, 313, 660--666.

Details

The data were obtained from Tables 1 and 2 in Collins and Langman (1985). The authors used Peto's (one-step) method for meta-analyzing the 27 trials. This approach is implemented in the rma.peto function. Using the same dataset, van Houwelingen, Zwinderman, and Stijnen (1993) describe some alternative approaches for analyzing these data, including fixed and random-effects conditional logistic models. Those are implemented in the rma.glmm function.

References

van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. Statistics in Medicine, 12, 2273--2284.

Examples

Run this code
### load data
dat <- get(data(dat.collins1985a))

### meta-analysis of log ORs using Peto's method (outcome: persistent or recurrent bleedings)
res <- rma.peto(ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat)
print(res, digits=2)

### meta-analysis of log ORs using a conditional logistic regression model (FE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
                model="CM.EL", method="FE")
summary(res)
predict(res, transf=exp, digits=2)

### plot the log-likelihoods of the odds ratios
llplot(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
       lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE)

### meta-analysis of log odds ratios using a conditional logistic regression model (RE model)
res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat,
                model="CM.EL", method="ML")
summary(res)
predict(res, transf=exp, digits=2)

### meta-analysis of log ORs using Peto's method (outcome: need for surgery)
res <- rma.peto(ai=o.xti, n1i=nti, ci=o.xci, n2i=nci, data=dat)
print(res, digits=2)

### meta-analysis of log ORs using Peto's method (outcome: death)
res <- rma.peto(ai=d.xti, n1i=nti, ci=d.xci, n2i=nci, data=dat)
print(res, digits=2)

Run the code above in your browser using DataLab