
x
. This visualization technique is intended
to be used with large graphs.
diffusionMap(graph, ...)
diffmap(graph, ...)
"diffusionMap"(graph, x, x.adj = round_to_seq, layout = NULL, jitter.args = list(), kde2d.args = list(n = 100), sharp.criter = function(x, w) { wvar(x, w) > (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))^2/12 }, ...)
"diffusionMap"(graph, slice = nslices(graph), ...)
"image"(x, ...)
"print"(x, ...)
"plot"(x, y = NULL, ...)
toa
vector.x
. If not NULL
then it is applied
to x
at the beginning (see details).graph
(must return coordinates).jitter
.kde2d
.diffnet_diffmap
kde2d
from
the MASS package. The complete algorithm follows:
x
is coerced into integer and the range is adjusted to start from 1.
NA
are replaced by zero.
layout
is passed, layout is computed using
layout_nicely
from igraph
kde2d
map is computed for each level of x
. The
resulting matrices are added up as a weighted sum. This only holds if
at the cell level the function sharp.criter
returns FALSE
.
kde2d
over the coordinates.
The function sharp.criter
must take two values, a vector of levels and a
vector of weights. It must return a logical scalar with value equal to TRUE
when a randomization at the cell level must be done, in which case the final
value of the cell is chosen using sample(x, 1, prob=w)
.
The resulting matrix can be passed to image
or similar.
The argument x.adj
uses by default the function round_to_seq
which basically maps x
to a fix length sequence of numbers such that
x.adj(x)
resembles an integer sequence.
dgr
,
drawColorKey
,
grid_distribution
,
hazard_rate
, plot_adopters
,
plot_diffnet2
, plot_diffnet
,
plot_infectsuscep
,
plot_threshold
,
rescale_vertex_igraph
# Example with a random graph --------------------------------------------------
set.seed(1231)
# Random scale-free diffusion network
x <- rdiffnet(1000, 4, seed.graph="scale-free", seed.p.adopt = .025,
rewire = FALSE, seed.nodes = "central",
rgraph.arg=list(self=FALSE, m=4),
threshold.dist = function(id) runif(1,.2,.4))
# Diffusion map (no random toa)
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=.5), layout=igraph::layout_with_fr)
# Random
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))
# Diffusion map (random toa)
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))
oldpar <- par(no.readonly = TRUE)
col <- colorRampPalette(blues9)(100)
par(mfrow=c(1,2), oma=c(1,0,0,0))
image(dm0, col=col, main="Non-random Times of Adoption\nAdoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,
outer = TRUE)
par(oldpar)
# Example with Brazilian Farmers --------------------------------------------
## Not run:
# dn <- brfarmersDiffNet
#
# # Setting last TOA as NA
# diffnet.toa(dn)[dn$toa == max(dn$toa)] <-
# NA
#
# # Coordinates
# coords <- sna::gplot.layout.fruchtermanreingold(
# as.matrix(dn$graph[[1]]), layout.par=NULL
# )
#
# # Plotting diffusion
# plot_diffnet2(dn, layout=coords, vertex.size = 300)
#
# # Adding diffusion map
# out <- diffusionMap(dn, layout=coords, kde2d.args=list(n=100, h=50))
# col <- adjustcolor(colorRampPalette(c("white","lightblue", "yellow", "red"))(100),.5)
# with(out$map, .filled.contour(x,y,z,pretty(range(z), 100),col))
# ## End(Not run)
Run the code above in your browser using DataLab