as.dudi
is called by many functions (dudi.pca
, dudi.coa
, dudi.acm
, ...)
and not directly by the user. It creates duality diagrams.
t.dudi
returns an object of class 'dudi
' where the rows are the columns and the columns are the rows
of the initial dudi
.
is.dudi
returns TRUE if the object is of class dudi
redo.dudi
computes again an analysis, eventually changing the number of kept axes. Used by other functions.
as.dudi(df, col.w, row.w, scannf, nf, call, type, tol = 1e-07,
full = FALSE)
# S3 method for dudi
print(x, …)
is.dudi(x)
redo.dudi(dudi, newnf = 2)
# S3 method for dudi
t(x)
# S3 method for dudi
summary(object, …)
# S3 method for dudi
[(x,i,j)
a data frame with n rows and p columns
a numeric vector containing the row weights
a numeric vector containing the column weights
a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
generally match.call()
a string of characters : the returned list will be of class c(type, "dudi")
a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null)
a logical value indicating whether all non null eigenvalues should be kept
objects of class dudi
further arguments passed to or from other methods
an integer indicating the number of kept axes
elements to extract (integer or empty): index of rows (i) and columns (j)
as.dudi and all the functions that use it return a list with the following components :
a data frame with n rows and p columns
column weights, a vector with n components
row (lines) weights, a vector with p components
eigenvalues, a vector with min(n,p) components
integer, number of kept axes
principal axes, data frame with p rows and nf columns
principal components, data frame with n rows and nf columns
column coordinates, data frame with p rows and nf columns
row coordinates, data frame with n rows and nf columns
original call
Escoufier, Y. (1987) The duality diagram : a means of better practical applications In Development in numerical ecology, Legendre, P. & Legendre, L. (Eds.) NATO advanced Institute, Serie G. Springer Verlag, Berlin, 139--156.
# NOT RUN {
data(deug)
dd1 <- dudi.pca(deug$tab, scannf = FALSE)
dd1
t(dd1)
is.dudi(dd1)
redo.dudi(dd1,3)
summary(dd1)
# }
Run the code above in your browser using DataLab