Learn R Programming

ergm (version 3.9.4)

ergm: Exponential-Family Random Graph Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of a given network, \(y\), on a set of nodes is \(h(y) \exp\{\eta(\theta) \cdot g(y)\}/c(\theta)\), where \(h(y)\) is the reference measure (usually \(h(y)=1\)), \(g(y)\) is a vector of network statistics for \(y\), \(\eta(\theta)\) is a natural parameter vector of the same length (with \(\eta(\theta)=\theta\) for most terms), and \(c(\theta)\) is the normalizing constant for the distribution. ergm can return a maximum pseudo-likelihood estimate, an approximate maximum likelihood estimate based on a Monte Carlo scheme, or an approximate contrastive divergence estimate based on a similar scheme. (For an overview of the package, see ergm-package.)

Usage

ergm(formula, response = NULL, reference = ~Bernoulli,
  constraints = ~., offset.coef = NULL, target.stats = NULL,
  eval.loglik = getOption("ergm.eval.loglik"), estimate = c("MLE",
  "MPLE", "CD"), control = control.ergm(), verbose = FALSE, ...)

is.ergm(object)

# S3 method for ergm print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for ergm coef(object, ...)

# S3 method for ergm coefficients(object, ...)

# S3 method for ergm vcov(object, sources = c("all", "model", "estimation"), ...)

Arguments

formula

An R formula object, of the form y ~ <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms and Morris, Handcock and Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM terms (terms for weighted edges). To create a network object in R, use the network() function, then add nodal attributes to it using the %v% operator if necessary. Enclosing a model term in offset() fixes its value to one specified in offset.coef.

response

Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.

reference

A one-sided formula specifying the reference measure (\(h(y)\)) to be used. (Defaults to ~Bernoulli.) See help for ERGM reference measures implemented in the ergm package.

constraints

A formula specifying one or more constraints on the support of the distribution of the networks being modeled, using syntax similar to the formula argument, on the right-hand side. Multiple constraints may be given, separated by “+” and “-” operators. (See ERGM constraints for the explanation of their semantics.) Together with the model terms in the formula and the reference measure, the constraints define the distribution of networks being modeled.

It is also possible to specify a proposal function directly either by passing a string with the function's name (in which case, arguments to the proposal should be specified through the prop.args argument to control.ergm) or by giving it on the LHS of the constraints formula, in which case it will override the one chosen automatically.

The default is ~., for an unconstrained model.

See the ERGM constraints documentation for the constraints implemented in the ergm package. Other packages may add their own constraints.

Note that not all possible combinations of constraints and reference measures are supported. However, for relatively simple constraints (i.e., those that simply permit or forbid specific dyads or sets of dyads from changing), arbitrary combinations should be possible.

offset.coef

A vector of coefficients for the offset terms.

target.stats

vector of "observed network statistics," if these statistics are for some reason different than the actual statistics of the network on the left-hand side of formula. Equivalently, this vector is the mean-value parameter values for the model. If this is given, the algorithm finds the natural parameter values corresponding to these mean-value parameters. If NULL, the mean-value parameters used are the observed statistics of the network in the formula.

eval.loglik

Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate the log-likelihoood associated with the fit. Has no effect for dyad-independent models. Since bridge sampling takes additional time, setting to FALSE may speed performance if likelihood values (and likelihood-based values like AIC and BIC) are not needed. Can be set globally via option(ergm.eval.loglik=...), which is set to TRUE when the package is loaded.

estimate

If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE" (the default), then an approximate maximum likelihood estimator is returned. For certain models, the MPLE and MLE are equivalent, in which case this argument is ignored. (To force MCMC-based approximate likelihood calculation even when the MLE and MPLE are the same, see the force.main argument of control.ergm. If "CD" (EXPERIMENTAL), the Monte-Carlo contrastive divergence estimate is returned. )

control

A list of control parameters for algorithm tuning. Constructed using control.ergm.

verbose

logical; if this is TRUE, the program will print out additional information, including goodness of fit statistics.

Additional arguments, to be passed to lower-level functions.

object

an ergm object.

x, digits

See print().

Automatically called when an object of class ergm is printed. Currently, summarizes the size of the MCMC sample, the \(\theta\) vector governing the selection of the sample, and the Monte Carlo MLE. The optional digits argument specifies the significant digits for coefficients

sources

For the vcov method, specify whether to return the covariance matrix from the ERGM model, the estimation process, or both combined.

Value

ergm returns an object of class ergm that is a list consisting of the following elements:

coef

The Monte Carlo maximum likelihood estimate of \(\theta\), the vector of coefficients for the model parameters.

sample

The \(n\times p\) matrix of network statistics, where \(n\) is the sample size and \(p\) is the number of network statistics specified in the model, generated by the last iteration of the MCMC-based likelihood maximization routine. These statistics are centered with respect to the observed statistics or target.stats, unless missing data MLE is used.

sample.obs

As sample, but for the constrained sample.

iterations

The number of Newton-Raphson iterations required before convergence.

MCMCtheta

The value of \(\theta\) used to produce the Markov chain Monte Carlo sample. As long as the Markov chain mixes sufficiently well, sample is roughly a random sample from the distribution of network statistics specified by the model with the parameter equal to MCMCtheta. If estimate="MPLE" then MCMCtheta equals the MPLE.

loglikelihood

The approximate change in log-likelihood in the last iteration. The value is only approximate because it is estimated based on the MCMC random sample.

gradient

The value of the gradient vector of the approximated loglikelihood function, evaluated at the maximizer. This vector should be very close to zero.

covar

Approximate covariance matrix for the MLE, based on the inverse Hessian of the approximated loglikelihood evaluated at the maximizer.

failure

Logical: Did the MCMC estimation fail?

network

Original network

newnetwork

The final network at the end of the MCMC simulation

coef.init

The initial value of \(\theta\).

est.cov

The covariance matrix of the model statistics in the final MCMC sample.

coef.hist, steplen.hist, stats.hist, stats.obs.hist

For the MCMLE method, the history of coefficients, Hummel step lengths, and average model statistics for each iteration..

control

The control list passed to the call.

etamap

The set of functions mapping the true parameter theta to the canonical parameter eta (irrelevant except in a curved exponential family model)

formula

The original formula entered into the ergm function.

target.stats

The target.stats used during estimation (passed through from the Arguments)

target.esteq

Used for curved models to preserve the target mean values of the curved terms. It is identical to target.stats for non-curved models.

constrained

The list of constraints implied by the constraints used by original ergm call

constraints

Constraints used during estimation (passed through from the Arguments)

reference

The reference measure used during estimation (passed through from the Arguments)

estimate

The estimation method used (passed through from the Arguments).

offset

vector of logical telling which model parameters are to be set at a fixed value (i.e., not estimated).

drop

If control$drop=TRUE, a numeric vector indicating which terms were dropped due to to extreme values of the corresponding statistics on the observed network, and how:

0

The term was not dropped.

-1

The term was at its minimum and the coefficient was fixed at -Inf.

+1

The term was at its maximum and the coefficient was fixed at +Inf.

estimable

A logical vector indicating which terms could not be estimated due to a constraints constraint fixing that term at a constant value.

null.lik

Log-likelihood of the null model. Valid only for unconstrained models.

mle.lik

The approximate log-likelihood for the MLE. The value is only approximate because it is estimated based on the MCMC random sample.

degeneracy.value

Score calculated to assess the degree of degeneracy in the model. Only shows when MCMLE.check.degeneracy is TRUE in control.ergm.

degeneracy.type

Supporting output for degeneracy.value. Only shows when MCMLE.check.degeneracy is TRUE in control.ergm. Mainly for internal use.

See the method print.ergm for details on how an ergm object is printed. Note that the method summary.ergm returns a summary of the relevant parts of the ergm object in concise summary format.

Methods (by generic)

  • print:

  • coef: extracts estimated model coefficients.

  • coefficients: An alias for ergm.

  • vcov: extracts the variance-covariance matrix of parameter estimates.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the observed network is never taken; instead, only the change in the number of triangles is recorded for each edge toggle.

In the implementation of ergm, the model is initialized in R, then all the model information is passed to a C program that generates the sample of network statistics using MCMC. This sample is then returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm. This can be chosen with the control.ergm(style="Robbins-Monro") option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-Hastings algorithm, depends on two things: The constraints, which define the set of possible networks that could be proposed in a particular Markov chain step, and the weights placed on these possible steps by the proposal distribution. The former may be controlled using the constraints argument described above. The latter may be controlled using the prop.weights argument to the control.ergm function.

The package is designed so that the user could conceivably add additional proposal types.

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals through sequential importance sampling. Statnet Project, Seattle, WA. Version 1. statnet.org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7). http://www.jstatsoft.org/v24/i07/.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https://cran.r-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical Software, 24(2). http://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (http://www.statnet.org). R package version 1.12.0, https://cran.r-project.org/package=network.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal of Statistical Software, 24(8). http://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working Paper #39, Center for Statistics and the Social Sciences, University of Washington. www.csss.washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks. Statnet Project, Seattle, WA. Version 1.0, statnet.org.

Handcock MS and Gile KJ (2010). Modeling Social Networks from Sampled Data. Annals of Applied Statistics, 4(1), 5-25. 10.1214/08-AOAS221

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA. Version 2, statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). http://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. 10.1214/12-EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). http://www.jstatsoft.org/v24/i04/.

Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph Models. Journal of Social Structure. Available from http://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf.

See Also

network, %v%, %n%, ergm-terms, ergmMPLE, summary.ergm, print.ergm

Examples

Run this code
# NOT RUN {
#
# load the Florentine marriage data matrix
#
data(flo)
#
# attach the sociomatrix for the Florentine marriage data
# This is not yet a network object.
#
flo
#
# Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
# print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
# create a vector indicating the wealth of each family (in thousands of lira) 
# and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
# create a plot of the social network
#
plot(flomarriage)
#
# now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
# Use 'data(package = "ergm")' to list the data sets in a
#
data(package="ergm")
#
# Load a network object of the Florentine data
#
data(florentine)
#
# Fit a model where the propensity to form ties between
# families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
# add terms for the propensity to form 2-stars and triangles
# of families 
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)

# import synthetic network that looks like a molecule
data(molecule)
# Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
# create a plot of the social network
# colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)

# measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)

# compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle
                        + nodematch("atomic type",diff=TRUE),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)
# }
# NOT RUN {
# Extract parameter estimates as a numeric vector:
coef(gest)
# }
# NOT RUN {
# Sources of variation in parameter estimates:
vcov(gest, sources="model")
vcov(gest, sources="estimation")
vcov(gest, sources="all") # the default
# }

Run the code above in your browser using DataLab