#
# See http://www.csde.washington.edu/statnet/latentnet
# for more examples
#
# For an explanation and examples of creating 'network' objects
# see the required 'network' package.
#
# Use 'data(package = "latentnet")' to list the data sets in a
#
data(package="latentnet")
#
# Using Sampson's Monk data, lets fit a
# simple latent position model
#
data(sampson)
#
# Get the group labels
#
group <- get.vertex.attribute(samplike,"group")
samp.labs <- substr(group,1,1)
#
samp.fit <- ergmm(samplike ~ latent(k=2), burnin=10000,
MCMCsamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Plot the fit
#
plot(samp.fit,label=samp.labs, vertex.col="group")
#
# Using Sampson's Monk data, lets fit a latent clustering model
#
samp.fit <- ergmm(samplike ~ latentcluster(k=2, ngroups=3), burnin=10000,
MCMCsamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Lets look at the goodness of fit:
#
plot(samp.fit,label=samp.labs, vertex.col="group")
plot(samp.fit,pie=TRUE,label=samp.labs)
plot(samp.fit,density=c(2,2))
plot(samp.fit,contours=5,contour.color="red")
plot(samp.fit,density=TRUE,drawarrows=TRUE)
#
# Add contours
#
ergmm.add.contours(samp.fit,nlevels=8,lwd=2)
points(samp.fit$Z.mkl,pch=19,col=samp.fit$class)
#
# Try a covariate on the group
#
samegroup <- outer(group, group, "==")
diag(samegroup) <- 0
samp.fit <- ergmm(samplike ~ latentcov(samegroup) + latent(k=2))
summary(samp.fit)
Run the code above in your browser using DataLab