# NOT RUN {
library(effectsize)
mtcars$am_f <- factor(mtcars$am)
mtcars$cyl_f <- factor(mtcars$cyl)
model <- aov(mpg ~ am_f * cyl_f, data = mtcars)
eta_squared(model)
eta_squared(model, generalized = "cyl_f")
omega_squared(model)
epsilon_squared(model)
cohens_f(model)
(etas <- eta_squared(model, partial = FALSE))
if(require(see)) plot(etas)
model0 <- aov(mpg ~ am_f + cyl_f, data = mtcars) # no interaction
cohens_f_squared(model0, model2 = model)
# Recommended:
# Type-3 effect sizes + effects coding
if (require(car, quietly = TRUE)) {
contrasts(mtcars$am_f) <- contr.sum
contrasts(mtcars$cyl_f) <- contr.sum
model <- aov(mpg ~ am_f * cyl_f, data = mtcars)
model_anova <- car::Anova(model, type = 3)
eta_squared(model_anova)
}
# afex takes care of both type-3 effects and effects coding:
if (require(afex)) {
data(obk.long, package = "afex")
model <- aov_car(value ~ treatment * gender + Error(id/(phase)),
data = obk.long, observed = "gender")
eta_squared(model)
epsilon_squared(model)
omega_squared(model)
eta_squared(model, partial = FALSE)
epsilon_squared(model, partial = FALSE)
omega_squared(model, partial = FALSE)
eta_squared(model, generalized = TRUE)
}
if (require("parameters")) {
model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)
eta_squared(mp)
}
if (require(lmerTest, quietly = TRUE)) {
model <- lmer(mpg ~ am_f * cyl_f + (1|vs), data = mtcars)
omega_squared(model)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab