Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

effectsize

Size does matter

The goal of this package is to provide utilities to work with indices of effect size and standardized parameters, allowing computation and conversion of indices such as Cohen’s d, r, odds-ratios, etc.

Installation

Run the following to install the latest GitHub-version of effectsize:

install.packages("devtools")
devtools::install_github("easystats/effectsize")

Or install the latest stable release from CRAN:

install.packages("effectsize")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

This package is focused on indices of effect size. But there are hundreds of them! Thus, everybody is welcome to contribute by adding support for the interpretation of new indices. If you’re not sure how to code it’s okay, just open an issue to discuss it and we’ll help :)

library(effectsize)

Effect Size Computation

Standardized Differences (Cohen’s d, Hedges’ g, Glass’ delta)

The package provides functions to compute indices of effect size.

cohens_d(iris$Sepal.Length, iris$Sepal.Width)
## Cohen's d |       95% CI
## ------------------------
##      4.21 | [3.80, 4.61]

hedges_g(iris$Sepal.Length, iris$Sepal.Width)
## Hedge's g |       95% CI
## ------------------------
##      4.20 | [3.79, 4.60]

glass_delta(iris$Sepal.Length, iris$Sepal.Width)
## Glass' delta |       95% CI
## ---------------------------
##         6.39 | [5.83, 6.95]

ANOVAs (Eta2, Omega2, …)

model <- aov(Sepal.Length ~ Species, data = iris)

eta_squared(model)
## Parameter | Eta2 (partial) |       90% CI
## -----------------------------------------
## Species   |           0.62 | [0.54, 0.68]

omega_squared(model)
## Parameter | Omega2 (partial) |       90% CI
## -------------------------------------------
## Species   |             0.61 | [0.53, 0.67]

epsilon_squared(model)
## Parameter | Epsilon2 (partial) |       90% CI
## ---------------------------------------------
## Species   |               0.61 | [0.54, 0.67]

And more…

Regression Models (Standardized Parameters)

Importantly, effectsize also provides advanced methods to compute standardized parameters for regression models.

m <- lm(Sepal.Length ~ Species + Sepal.Width, data = iris)

standardize_parameters(m)
## Parameter         | Coefficient (std.) |         95% CI
## -------------------------------------------------------
## (Intercept)       |              -1.37 | [-1.55, -1.20]
## Speciesversicolor |               1.76 | [ 1.49,  2.03]
## Speciesvirginica  |               2.35 | [ 2.11,  2.59]
## Sepal.Width       |               0.42 | [ 0.31,  0.53]
## 
## # Standardization method: Refit

Also, models can be re-fit with standardized data:

standardize(m)
## 
## Call:
## lm(formula = Sepal.Length ~ Species + Sepal.Width, data = data_std)
## 
## Coefficients:
##       (Intercept)  Speciesversicolor   Speciesvirginica        Sepal.Width  
##            -1.371              1.762              2.351              0.423

Effect Size Conversion

The package also provides ways of converting between different effect sizes.

convert_d_to_r(d = 1)
## [1] 0.447

And for recovering effect sizes from test statistics.

F_to_d(15, df = 1, df_error = 60)
## d |       95% CI
## ----------------
## 1 | [0.46, 1.53]

F_to_r(15, df = 1, df_error = 60)
##    r |       95% CI
## -------------------
## 0.45 | [0.22, 0.61]

F_to_eta2(15, df = 1, df_error = 60)
## Eta2 (partial) |       90% CI
## -----------------------------
##           0.20 | [0.07, 0.34]

Effect Size Interpretation

The package allows for an automated interpretation of different indices.

interpret_r(r = 0.3)
## [1] "large"
## (Rules: funder2019)

Different sets of “rules of thumb” are implemented (guidelines are detailed here) and can be easily changed.

interpret_d(d = 0.45, rules = "cohen1988")
## [1] "small"
## (Rules: cohen1988)

interpret_d(d = 0.45, rules = "gignac2016")
## [1] "moderate"
## (Rules: gignac2016)

Utilities

Data Standardization, Normalization, Scaling, and Rank-Transforming

Many indices of effect size stem out, or are related, to standardization. Thus, it is expected that effectsize provides functions to standardize data.

A standardization sets the mean and SD to 0 and 1:

library(parameters)

df <- standardize(iris)
describe_distribution(df$Sepal.Length)
##      Mean | SD |  IQR |         Range | Skewness | Kurtosis |   n | n_Missing
## -----------------------------------------------------------------------------
## -4.48e-16 |  1 | 1.57 | [-1.86, 2.48] |     0.31 |    -0.55 | 150 |         0

Alternatively, normalization is similar to standardization in that it is a linear translation of the parameter space (i.e., it does not change the shape of the data distribution). However, it puts the values within a 0 - 1 range, which can be useful in cases where you want to compare or visualise data on the same scale.

df <- normalize(iris)
describe_distribution(df$Sepal.Length)
## Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
## -------------------------------------------------------------------------
## 0.43 | 0.23 | 0.36 | [0.00, 1.00] |     0.31 |    -0.55 | 150 |         0

This is a special case of a rescaling function, which can be used to rescale the data to an arbitrary new scale. Let’s change all numeric variables to “percentages”:

df <- change_scale(iris, to = c(0, 100)) 
describe_distribution(df$Sepal.Length)
##  Mean |    SD |   IQR |          Range | Skewness | Kurtosis |   n | n_Missing
## ------------------------------------------------------------------------------
## 42.87 | 23.00 | 36.11 | [0.00, 100.00] |     0.31 |    -0.55 | 150 |         0

For some robust statistics, one might also want to transfom the numeric values into ranks, which can be performed using the ranktransform() function.

ranktransform(c(1, 3, -2, 6, 6, 0.5))
## [1] 3.0 4.0 1.0 5.5 5.5 2.0

or signed-ranks:

ranktransform(c(1, 3, -2, 6, 6, 0.5), sign = TRUE)
## [1]  2.0  4.0 -3.0  5.5  5.5  1.0

Copy Link

Version

Install

install.packages('effectsize')

Monthly Downloads

59,962

Version

0.4.0

License

GPL-3

Maintainer

Mattan S. Ben-Shachar

Last Published

October 25th, 2020

Functions in effectsize (0.4.0)

effectsize

Effect Size
cohens_d

Effect size for differences
chisq_to_phi

Conversion Chi-Squared to Phi or Cramer's V
equivalence_test.effectsize_table

Test for Practical Equivalence
.factor_to_numeric

Safe transformation from factor/character to numeric
d_to_common_language

Convert Standardized Mean Difference to Common Language Effect Sizes
d_to_r

Convert between d, r and Odds ratio
F_to_eta2

Convert test statistics (F, t) to indices of partial variance explained (partial Eta / Omega / Epsilon squared and Cohen's f)
change_scale

Rescale a numeric variable
adjust

Adjust data for the effect of other variable(s)
eta_squared_posterior

Simulate Eta Squared from Posterior Predictive Distribution
format_standardize

Transform a standardized vector into character
t_to_d

Convert test statistics (t, z, F) to effect sizes of differences (Cohen's d) or association (partial r)
interpret_bf

Interpret Bayes Factor (BF)
interpret_omega_squared

Interpret ANOVA effect size
phi

Effect size for contingency tables
ranktransform

(Signed) rank transformation
interpret_d

Interpret standardized differences
interpret_p

Interpret p-values
interpret_direction

Interpret direction
hardlyworking

Workers' salary and other information
interpret_gfi

Interpret of indices of CFA / SEM goodness of fit
interpret_ess

Interpret Bayesian diagnostic indices
es_info

List of effect size names
interpret_oddsratio

Interpret Odds ratio
standardize_info

Get Standardization Information
eta_squared

Effect size for ANOVA
standardize_parameters

Parameters standardization
interpret_r2

Interpret coefficient of determination (R2)
rules

Interpretation Grid
interpret_rope

Interpret Bayesian diagnostic indices
reexports

Objects exported from other packages
interpret

Generic function for interpretation
interpret_parameters

Interpret of standardized slopes
is_effectsize_name

Checks if character is of a supported effect size
normalize

Normalize numeric variable to [0-1] range
odds_to_probs

Convert between Odds and Probabilities
interpret_r

Interpret correlation
sd_pooled

Pooled Standard Deviation
standardize

Standardization (Z-scoring)
oddsratio_to_riskratio

Convert between Odds ratios and Risk ratios