# NOT RUN {
## Probability Forecast for Binary Target
binary_example <- data.table::setDT(scoringutils::binary_example_data)
eval <- scoringutils::eval_forecasts(binary_example,
summarise_by = c("model"),
quantiles = c(0.5), sd = TRUE,
verbose = FALSE)
## Quantile Forecasts
# wide format example (this examples shows usage of both wide formats)
range_example_wide <- data.table::setDT(scoringutils::range_example_data_wide)
range_example <- scoringutils::range_wide_to_long(range_example_wide)
# equivalent:
wide2 <- data.table::setDT(scoringutils::range_example_data_semi_wide)
range_example <- scoringutils::range_wide_to_long(wide2)
eval <- scoringutils::eval_forecasts(range_example,
summarise_by = "model",
quantiles = c(0.05, 0.95),
sd = TRUE)
eval <- scoringutils::eval_forecasts(range_example)
#long format
eval <- scoringutils::eval_forecasts(scoringutils::range_example_data_long,
summarise_by = c("model", "range"))
## Integer Forecasts
integer_example <- data.table::setDT(scoringutils::integer_example_data)
eval <- scoringutils::eval_forecasts(integer_example,
summarise_by = c("model"),
quantiles = c(0.1, 0.9),
sd = TRUE,
pit_plots = TRUE)
eval <- scoringutils::eval_forecasts(integer_example)
## Continuous Forecasts
continuous_example <- data.table::setDT(scoringutils::continuous_example_data)
eval <- scoringutils::eval_forecasts(continuous_example)
eval <- scoringutils::eval_forecasts(continuous_example,
quantiles = c(0.5, 0.9),
sd = TRUE,
summarise_by = c("model"))
# }
Run the code above in your browser using DataLab