Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

scoringutils (version 0.1.7.2)

Utilities for Scoring and Assessing Predictions

Description

Combines a collection of metrics and proper scoring rules (Tilmann Gneiting & Adrian E Raftery (2007) ) with an easy to use wrapper that can be used to automatically evaluate predictions. Apart from proper scoring rules functions are provided to assess bias, sharpness and calibration (Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind M. Eggo, W. John Edmunds (2019) ) of forecasts. Several types of predictions can be evaluated: probabilistic forecasts (generally predictive samples generated by Markov Chain Monte Carlo procedures), quantile forecasts or point forecasts. Observed values and predictions can be either continuous, integer, or binary. Users can either choose to apply these rules separately in a vector / matrix format that can be flexibly used within other packages, or they can choose to do an automatic evaluation of their forecasts. This is implemented with 'data.table' and provides a consistent and very efficient framework for evaluating various types of predictions.

Copy Link

Version

Install

install.packages('scoringutils')

Monthly Downloads

895

Version

0.1.7.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Nikos Bosse

Last Published

July 21st, 2021

Functions in scoringutils (0.1.7.2)

ae_median_quantile

Absolute Error of the Median (Quantile-based Version)
ae_median_sample

Absolute Error of the Median (Sample-based Version)
bias

Determines bias of forecasts
dss

Dawid-Sebastiani Score
binary_example_data

Binary Forecast Example Data
eval_forecasts

Evaluate forecasts
check_not_null

Check Variable is not NULL
compare_two_models

Compare Two Models Based on Subset of Common Forecasts
interval_coverage

Plot Interval Coverage
integer_example_data

Integer Forecast Example Data
abs_error

Absolute Error
crps

Ranked Probability Score
interval_score

Interval Score
add_quantiles

Add Quantiles to Predictions When Summarising
logs

LogS
delete_columns

Delete Columns From a Data.table
extract_from_list

Extract Elements From a List of Lists
geom_mean_helper

Calculate Geometric Mean
quantile_to_long

Pivot Range Format Forecasts From Wide to Long Format
quantile_to_range

Change Data from a Plain Quantile Format to a Long Range Format
pit

Probability Integral Transformation
pit_df

Probability Integral Transformation (data.frame Format)
quantile_coverage

Plot Quantile Coverage
merge_pred_and_obs

Merge Forecast Data And Observations
add_rel_skill_to_eval_forecasts

Add relative skill to eval_forecasts()
quantile_bias

Determines Bias of Quantile Forecasts
plot_predictions

Plot Predictions vs True Values
correlation_plot

Plot Correlation Between Metrics
continuous_example_data

Continuous Forecast Example Data
hist_PIT

PIT Histogram
quantile_example_data

Quantile Example Data
range_to_quantile

Pivot Change Data from a Range Format to a Quantile Format
mse

Mean Squared Error
quantile_to_range_long

Change Data from a Plain Quantile Format to a Long Range Format
add_sd

Add Standard Deviation to Predictions When Summarising
eval_forecasts_binary

Evaluate forecasts in a Binary Format
score_table

Plot Coloured Score Table
quantile_to_wide

Pivot Range Format Forecasts From Long to Wide Format
scoringutils

scoringutils
eval_forecasts_sample

Evaluate forecasts in a Sample-Based Format (Integer or Continuous)
range_wide_to_long

Pivot Range Format Forecasts From Wide to Long Format
sample_to_range_long

Change Data from a Sample Based Format to a Long Interval Range Format
sharpness

Determines sharpness of a probabilistic forecast
score_heatmap

Create a Heatmap of a Scoring Metric
hist_PIT_quantile

PIT Histogram Quantile
example_quantile_forecasts_only

Quantile Example Data - Forecasts only
pairwise_comparison

Do Pairwise Comparisons of Scores
range_long_to_quantile

Change Data from a Range Format to a Quantile Format
show_avail_forecasts

Visualise Where Forecasts Are Available
pairwise_comparison_one_group

Do Pairwise Comparison for one Set of Forecasts
range_example_data_wide

Range Forecast Example Data (Wide Format)
example_truth_data_only

Truth data only
range_long_to_wide

Pivot Range Format Forecasts From Long to Wide Format
range_plot

Plot Metrics by Range of the Prediction Interval
update_list

Update a List
range_example_data_long

Range Forecast Example Data (Long Format)
pit_df_fast

Probability Integral Transformation (data.frame Format, fast version)
plot_pairwise_comparison

Plot Heatmap of Pairwise Comparisons
sample_to_quantile

Change Data from a Sample Based Format to a Quantile Format
range_example_data_semi_wide

Range Forecast Example Data (Semi-Wide Format)
sample_to_range

Change Data from a Sample Based Format to a Long Interval Range Format
wis_components

Plot Contributions to the Weighted Interval Score
brier_score

Brier Score
check_equal_length

Check Length