gcc.tsheatmap(x, cpus = 1, ## correlation method method = c("GCC", "PCC", "SCC", "KCC", "BiWt", "MI", "MINE", "ED"), distancemethod = c("Raw", "Abs", "Sqr"), #cluster method clustermethod = c("complete", "average", "median", "centroid", "mcquitty", "single", "ward"), #hcdata by output gcc.tsheatmap rowhcdata = NULL, colhcdata = NULL, keynote = "FPKM", ## dendrogram control symm = FALSE, ## data scaling scale = c("none","row", "column"), na.rm=TRUE,
## image plot revC = identical(Colv, "Rowv"), add.expr,
## mapping data to colors breaks, symbreaks=min(x < 0, na.rm=TRUE) || scale!="none",
## colors colrange = c("yellow", "red"), tissuecol= "heat.colors",
## block sepration colsep = 0.15, rowsep, sepcolor="white", sepwidth=c(0.05,0.05), ## level trace trace=c("none","column","row","both"), tracecol="cyan", hline=median(breaks), vline=median(breaks), linecol=tracecol,
## plot margins margins = c(5, 5),
## plot labels main = NULL, xlab = NULL, ylab = NULL,
## plot layout lmat = NULL, lhei = NULL, lwid = NULL,
## extras ...)
gcc.dist
, cor.matrix
, gcc.hclust
, gcc.tsheatmap
.
## Not run:
# data(rsgcc)
#
# #get expression matrix of tissue-specific genes
# tsRes <- getsgene(rnaseq, tsThreshold = 0.75, MeanOrMax = "Max", Fraction = TRUE)
#
# #heat map of tissue-specific genes
# thm <- gcc.tsheatmap(tsRes$tsgene, cpus = 1, method = "GCC",
# distancemethod = "Raw", clustermethod = "complete")
# ## End(Not run)
Run the code above in your browser using DataLab