Learn R Programming

DIME (version 1.3.0)

gng.plot.mix: Plot GNG Mixture Component Function

Description

Plot each estimated individual components of GNG mixture model fitted using gng.fit.

Usage

gng.plot.mix(obj, amplify = 1, resolution = 100, new.plot = TRUE, ...)

Arguments

obj

a list object returned by gng.fit function.

amplify

optional scaling factor for visualization purposes.

resolution

optional bandwidth used to estimate the density function. Higher number makes a smoother curve.

new.plot

optional logical variable on whether to create new plot.

additional graphical arguments to be passed to methods (see par).

See Also

gng.plot.mix, gng.plot.comp, gng.plot.fit, gng.plot.qq, DIME.plot.fit, inudge.plot.fit.

Examples

Run this code
# NOT RUN {
library(DIME)
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1); 
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]), 
  rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]), 
  rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]), 
  rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]), 
  rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]), 
  rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]), 
  rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2])); 
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]), 
  rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]), 
  rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]), 
  rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);

# Fitting a GNG model only
bestGng <- gng.fit(data,K=2);

# Plot the estimated GNG model imposed on the histogram of the observed data
hist(unlist(data),freq=FALSE,breaks=100,xlim=c(-20,20))
gng.plot.mix(bestGng,resolution=1000,new.plot=FALSE,col="red");
# }

Run the code above in your browser using DataLab