$$y=\lambda W y + X \beta + u$$ $$u=\rho W u + e$$ with $$e ~ N(0,\sigma^2_i)$$
The model allows for spatial lag in the dependent variable and disturbances. The innovations in the disturbance process are assumed heteroskedastic of an unknown form.
gstslshet(formula, data=list(), listw, na.action=na.fail,
zero.policy=NULL,initial.value=0.2, abs.tol=1e-20,
rel.tol=1e-10, eps=1e-5, inverse=T,sarar=T)
## S3 method for class 'gstsls':
impacts(obj, \dots, tr, R = NULL, listw = NULL,
tol = 1e-06, empirical = FALSE, Q=NULL)
sphet
'gs2slshac'
The initial value for the optimization in step 1b is taken to be initial.value
. The initial value in step 1c is the
optimal parameter of step 1b. Finally, the initial value for the optimization of step 2b is the optimal parameter of step 1c.
Internally, the object of class listw
is transformed into a Matrix
using the function listw2dgCMatrix.
The expression of the estimated variance covariance matrix of the limiting
distribution of the normalized sample moments based on 2SLS residuals
involves the inversion of $I-\rho W'$.
When inverse
is FALSE
, the inverse is calculated using the approximation
$I +\rho W' + \rho^2 W'^2 + ...+ \rho^n W'^n$.
The powers considered depend on a condition.
The
function will keep adding terms until the absolute value of the sum
of all elements
of the matrix $\rho^i W^i$ is greater than a fixed $\epsilon$ (eps
). By default eps
is set to 1e-5.
Kelejian, H.H. and Prucha, I.R. (2007) Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances, Journal of Econometrics, forthcoming.
Kelejian, H.H. and Prucha, I.R. (1999) A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model, International Economic Review, 40, pages 509--533. Kelejian, H.H. and Prucha, I.R. (1998) A Generalized Spatial Two Stage Least Square Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, Journal of Real Estate Finance and Economics, 17, pages 99--121.
stslshac
library(spdep)
data(columbus)
listw<-nb2listw(col.gal.nb)
res<-gstslshet(CRIME~HOVAL + INC, data=columbus, listw=listw)
summary(res)
Run the code above in your browser using DataLab