stslshac(formula, data=list(),listw,na.action=na.fail,zero.policy=NULL, HAC=TRUE,
distance=NULL,type=c("Epanechnikov","Triangular","Bisquare","Parzen", "QS","TH"),
bandwidth="variable",W2X=TRUE)
sphet
's2slshac'
Six different kernel functions are implemented:
'Epanechnikov'
:$K(z) = 1-z^2$'Triangular'
:$K(z) = 1-z$'Bisquare'
:$K(z) = (1-z^2)^2$'Parzen'
:$K(z) = 1-6z^2+6 |z|^3$if$z \leq 0.5$and$K(z) = 2(1-|z|)^3$if$0.5 < z \leq 1$'TH'
(Tukey - Hanning):$K(z) = \frac{1+ \cos(\pi z)}{2}$'QS'
(Quadratic Spectral):$K(z) = \frac{25}{12\pi^2z^2}
(\frac{\sin(6\pi z)/5)}{6\pi z/5} - \cos(6\pi z)/5)$).If the kernel type is not one of the six implemented, the function will terminate with an error message. The spatial two stage least square estimator is based on the matrix of instruments $H=[X,WX,W^2X^2]$.
Kelejian, H.H. and Prucha, I.R. (1999) A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model, International Economic Review, 40, pages 509--533. Kelejian, H.H. and Prucha, I.R. (1998) A Generalized Spatial Two Stage Least Square Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, Journal of Real Estate Finance and Economics, 17, pages 99--121.
gstslshet
, distance
, distance
library(spdep)
data(columbus)
listw<-nb2listw(col.gal.nb)
data(coldis)
res<-stslshac(CRIME~HOVAL + INC, data=columbus,listw=listw, distance=coldis, type='Triangular')
summary(res)
Run the code above in your browser using DataLab