### bivariate example
data(unicef)
H.pi <- Hpi(unicef, nstage=1)
fhat <- kde(unicef, H.pi)
### trivariate example
mus <- rbind(c(0,0,0), c(2,2,2))
Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3)
Sigmas <- rbind(Sigma, Sigma)
props <- c(1/2, 1/2)
x <- rmvnorm.mixt(n=100, mus=mus, Sigmas=Sigmas, props=props)
H.pi <- Hpi(x)
fhat <- kde(x, H.pi, eval.levels=seq(-3,3, length=9))
### 4-variate example
library(MASS)
data(iris)
ir <- iris[,1:4][iris[,5]=="setosa",]
H.scv <- Hscv(ir)
fhat <- kde(ir, H.scv, eval.points=ir)
Run the code above in your browser using DataLab