### bivariate example
data(unicef)
H.scv <- Hscv(unicef)
fhat <- kde(unicef, H.scv)
layout(rbind(c(1,2), c(3,4)))
plot(fhat, display="slice", cont=seq(10,90, by=20), cex=0.3)
plot(fhat, display="slice", ncont=5, cex=0.3, drawlabels=FALSE)
plot(fhat, display="persp")
plot(fhat, display="image", col=rev(heat.colors(15)))
layout(1)
### 3-variate example
mus <- rbind(c(0,0,0), c(2,2,2))
Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3)
Sigmas <- rbind(Sigma, Sigma)
props <- c(1/2, 1/2)
x <- rmvnorm.mixt(n=100, mus=mus, Sigmas=Sigmas, props=props)
H.pi <- Hpi(x)
fhat <- kde(x, H.pi, eval.levels=seq(-3,3, length=9))
plot(fhat, disp="slice", ncont=6, cex=0.3)
Run the code above in your browser using DataLab