powered by
A very basic implementation of k-means. Beware that morphospaces are calculated so far for the 1st and 2nd component.
KMEANS(x, ...)# S3 method for PCA KMEANS(x, centers, nax = 1:2, pch = 20, cex = 0.5, ...)
# S3 method for PCA KMEANS(x, centers, nax = 1:2, pch = 20, cex = 0.5, ...)
the same thing as kmeans
PCA object
additional arguments to be passed to kmeans
numeric number of centers
numeric the range of PC components to use (1:2 by default)
to draw the points
Other multivariate: CLUST(), KMEDOIDS(), LDA(), MANOVA_PW(), MANOVA(), MDS(), MSHAPES(), NMDS(), PCA(), classification_metrics()
CLUST()
KMEDOIDS()
LDA()
MANOVA_PW()
MANOVA()
MDS()
MSHAPES()
NMDS()
PCA()
classification_metrics()
data(bot) bp <- PCA(efourier(bot, 10)) KMEANS(bp, 2)
Run the code above in your browser using DataLab