This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known, use
layer_integer_lookup()
instead.
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot",
sparse = FALSE,
...
)
What to call the new Layer
instance with. Typically a keras
Model
, another Layer
, or a tf.Tensor
/KerasTensor
. If object
is
missing, the Layer
instance is returned, otherwise, layer(object)
is
returned.
The total number of tokens the layer should support. All
inputs to the layer must integers in the range 0 <= value < num_tokens
,
or an error will be thrown.
Specification for the output of the layer. Defaults to
"multi_hot"
. Values can be "one_hot"
, "multi_hot"
or "count"
,
configuring the layer as follows:
"one_hot"
: Encodes each individual element in the input into an array
of num_tokens
size, containing a 1 at the element index. If the last
dimension is size 1, will encode on that dimension. If the last dimension
is not size 1, will append a new dimension for the encoded output.
"multi_hot"
: Encodes each sample in the input into a single array of
num_tokens
size, containing a 1 for each vocabulary term present in the
sample. Treats the last dimension as the sample dimension, if input shape
is (..., sample_length)
, output shape will be (..., num_tokens)
.
"count"
: Like "multi_hot"
, but the int array contains a count of the
number of times the token at that index appeared in the sample.
For all output modes, currently only output up to rank 2 is supported.
Boolean. If TRUE
, returns a SparseTensor
instead of a dense
Tensor
. Defaults to FALSE
.
standard layer arguments.
https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding
https://keras.io/api/layers/preprocessing_layers/categorical/category_encoding/
Other categorical features preprocessing layers:
layer_hashing()
,
layer_integer_lookup()
,
layer_string_lookup()
Other preprocessing layers:
layer_center_crop()
,
layer_discretization()
,
layer_hashing()
,
layer_integer_lookup()
,
layer_normalization()
,
layer_random_contrast()
,
layer_random_crop()
,
layer_random_flip()
,
layer_random_height()
,
layer_random_rotation()
,
layer_random_translation()
,
layer_random_width()
,
layer_random_zoom()
,
layer_rescaling()
,
layer_resizing()
,
layer_string_lookup()
,
layer_text_vectorization()