Crop the central portion of the images to target height and width
layer_center_crop(object, height, width, ...)
What to call the new Layer
instance with. Typically a keras
Model
, another Layer
, or a tf.Tensor
/KerasTensor
. If object
is
missing, the Layer
instance is returned, otherwise, layer(object)
is
returned.
Integer, the height of the output shape.
Integer, the width of the output shape.
standard layer arguments.
Input shape:
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format.
Output shape:
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels)
.
If the input height/width is even and the target height/width is odd (or inversely), the input image is left-padded by 1 pixel.
https://www.tensorflow.org/api_docs/python/tf/keras/layers/CenterCrop
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop
Other image preprocessing layers:
layer_rescaling()
,
layer_resizing()
Other preprocessing layers:
layer_category_encoding()
,
layer_discretization()
,
layer_hashing()
,
layer_integer_lookup()
,
layer_normalization()
,
layer_random_contrast()
,
layer_random_crop()
,
layer_random_flip()
,
layer_random_height()
,
layer_random_rotation()
,
layer_random_translation()
,
layer_random_width()
,
layer_random_zoom()
,
layer_rescaling()
,
layer_resizing()
,
layer_string_lookup()
,
layer_text_vectorization()