pargev
.
The L-moments in terms of the parameters are$$\lambda_1 = \xi + \frac{\alpha}{\kappa}(1-\Gamma(1+\kappa)) \mbox{,}$$ $$\lambda_2 = \frac{\alpha}{\kappa}(1-2^{-\kappa})\Gamma(1+\kappa) \mbox{,}$$ $$\tau_3 = \frac{2(1-3^{-\kappa})}{1-2^{-\kappa}} - 3 \mbox{, and}$$ $$\tau_4 = \frac{5(1-4^{-\kappa})-10(1-3^{-\kappa})+6(1-2^{-\kappa})}{1-2^{-\kappa}} \mbox{.}$$
lmomgev(para)
list
is returned.Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
pargev
, quagev
, cdfgev
lmr <- lmom.ub(c(123,34,4,654,37,78))
lmr
lmomgev(pargev(lmr))
Run the code above in your browser using DataLab