
loge(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
negloge(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
logneg(theta, bvalue = NULL, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE)
Links
.Links
.loge
.
For deriv = 0
, the log of theta
, i.e., log(theta)
when inverse = FALSE
, and if inverse = TRUE
then
exp(theta)
.
For deriv = 1
, then the function returns
d eta
/ d theta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.theta
close to 0 or out of range
result in
Inf
, -Inf
, NA
or NaN
.
The function loge
computes
$\log(\theta)$ whereas negloge
computes
$-\log(\theta)=\log(1/\theta)$.
The function logneg
computes
$\log(-\theta)$, hence is suitable for parameters
that are negative, e.g.,
a trap-shy effect in posbernoulli.b
.
Links
,
explink
,
logit
,
logc
,
loglog
,
log
,
logoff
,
lambertW
,
posbernoulli.b
.loge(seq(-0.2, 0.5, by = 0.1))
loge(seq(-0.2, 0.5, by = 0.1), bvalue = .Machine$double.xmin)
negloge(seq(-0.2, 0.5, by = 0.1))
negloge(seq(-0.2, 0.5, by = 0.1), bvalue = .Machine$double.xmin)
logneg(seq(-0.5, -0.2, by = 0.1))
Run the code above in your browser using DataLab