lognormal(lmeanlog = "identity", lsdlog = "loge", zero = 2)
lognormal3(lmeanlog = "identity", lsdlog = "loge",
powers.try = (-3):3, delta = NULL, zero = 2)
Links
for more choices.lognormal()
,
the values must be from the set {1,2} which correspond to
mu
, sigma
, respectively.
For min(y) - 10^powers.try
where
y
is the response.delta = min(y)-lambda
.
If given, this supersedes the powers.try
argument.
The value must be positive."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
A random variable $Y$ has a 3-parameter lognormal distribution
if $\log(Y-\lambda)$
is distributed $N(\mu, \sigma^2)$. Here,
$\lambda < Y$.
The expected value of $Y$, which is
lognormal()
and lognormal3()
fit the 2- and 3-parameter
lognormal distribution respectively. Clearly, if the location
parameter $\lambda=0$ then both distributions coincide.
rlnorm
,
normal1
,
CommonVGAMffArguments
.ldat <- data.frame(y = rlnorm(nn <- 1000, meanlog = 1.5, sdlog = exp(-0.8)))
fit <- vglm(y ~ 1, lognormal, ldat, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
ldat2 <- data.frame(x2 = runif(nn <- 1000))
ldat2 <- transform(ldat2, y = rlnorm(nn, mean = 0.5, sd = exp(x2)))
fit <- vglm(y ~ x2, lognormal(zero = 1), ldat2, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
Coef(fit)
lambda <- 4
ldat3 <- data.frame(y = lambda + rlnorm(n = 1000, mean = 1.5, sd = exp(-0.8)))
fit <- vglm(y ~ 1, lognormal3, ldat3, trace = TRUE, crit = "c")
coef(fit, matrix = TRUE)
summary(fit)
Run the code above in your browser using DataLab