Learn R Programming

geostatsp (version 2.0.6)

Geostatistical Modelling with Likelihood and Bayes

Description

Geostatistical modelling facilities using 'SpatRaster' and 'SpatVector' objects are provided. Non-Gaussian models are fit using 'INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) . The 'RandomFields' package is available at .

Copy Link

Version

Install

install.packages('geostatsp')

Monthly Downloads

700

Version

2.0.6

License

GPL

Maintainer

Last Published

February 20th, 2024

Functions in geostatsp (2.0.6)

loaloa

Loaloa prevalence data from 197 village surveys
inla.models

Valid models in INLA
lgm-methods

Linear Geostatistical Models
profLlgm

Joint confidence regions
postExp

Exponentiate posterior quantiles
matern

Evaluate the Matern correlation function
maternGmrfPrec

Precision matrix for a Matern spatial correlation
rongelapUTM

Rongelap data
stackRasterList

Converts a list of rasters, possibly with different projections and resolutions, to a single raster stack.
simLgcp

Simulate a log-Gaussian Cox process
squareRaster-methods

Create a raster with square cells
spatialRoc

Sensitivity and specificity
swissRain

Swiss rainfall data
wheat

Mercer and Hall wheat yield data
swissRainR

Raster of Swiss rain data
conditionalGmrf

Conditional distribution of GMRF
variog

Compute Empirical Variograms and Permutation Envelopes
murder

Murder locations
pcPriorRange

PC prior for range parameter
RFsimulate

Simulation of Random Fields
glgm-methods

Generalized Linear Geostatistical Models
excProb

Exceedance probabilities
krigeLgm

Spatial prediction, or Kriging
likfitLgm

Likelihood Based Parameter Estimation for Gaussian Random Fields
gambiaUTM

Gambia data