metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, studlab,
data=NULL, subset=NULL, sm="MD",
level = 0.95, level.comb = level,
comb.fixed=TRUE, comb.random=TRUE,
title="", complab="", outclab="",
label.e="Experimental", label.c="Control",
byvar, bylab, print.byvar=TRUE)
"MD"
or "SMD"
) is to be used for pooling of
studies.n.e
).c("metacont", "meta")
with corresponding
print
, summary
, plot
function. The object is a
list containing the following components:"Inverse"
.sm="MD"
-- which correspond to
sm="WMD"
in older versions (<0.9) of="" the="" meta="" package.="" for="" summary="" measure="" "SMD", Hedges' adjusted g is utilised for
pooling. Internally, both fixed effect and random effects models are calculated
regardless of values choosen for arguments comb.fixed
and
comb.random
. Accordingly, the estimate for the random effects
model can be extracted from component TE.random
of an object
of class "meta"
even if comb.random=FALSE
. However, all
functions in R package meta
will adequately consider the values
for comb.fixed
and comb.random
. E.g. function
print.meta
will not print results for the random effects
model if comb.random=FALSE
.
The function metagen
is called internally to calculate
individual and overall treatment estimates and standard errors.
0.9)>
metabin
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
meta1
meta2 <- metacont(Fleiss93cont$n.e, Fleiss93cont$mean.e,
Fleiss93cont$sd.e,
Fleiss93cont$n.c, Fleiss93cont$mean.c,
Fleiss93cont$sd.c,
sm="SMD")
meta2
Run the code above in your browser using DataLab