meta
.## S3 method for class 'meta':
print(x, sortvar, level=x$level, level.comb=x$level.comb,
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
details=FALSE, ma=TRUE, digits=max(4, .Options$digits - 3), ...)## S3 method for class 'metabias':
print(x, ...)
## S3 method for class 'meta':
summary(object, byvar=object$byvar,
bylab=object$bylab, print.byvar=object$print.byvar,
bystud=FALSE,
level=object$level, level.comb=object$level.comb,
comb.fixed=object$comb.fixed, comb.random=object$comb.random,
warn=TRUE, ...)
## S3 method for class 'summary.meta':
print(x, digits = max(3, .Options$digits - 3),
print.byvar,
comb.fixed=x$comb.fixed, comb.random=x$comb.random,
header=TRUE, ...)
meta
, metabias
, or
summary.meta
.meta
.x$TE
).x$TE
).print.default
.print.byvar
is set to TRUE
.summary.meta
in connection with metacum
or
metainf
should result in a warning.summary.meta
with the
following elements:byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.byvar
is not missing.read.rm5
. If a meta-analysis is then conducted using
function metacr
, information on subgroups is available in R
(components byvar
, bylab
, and print.byvar
,
byvar
in an object of class "meta"
). Accordingly, by using function
metacr
there is no need to define subgroups in order to redo
the statistical analysis conducted in the Cochrane review.Higgins JPT & Thompson SG (2002), Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539--1558.
metabin
, metacont
, metagen
data(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
summary(meta1)
summary(meta1, byvar=c(1,2,1,1,2), bylab="group")
Run the code above in your browser using DataLab