meta.## S3 method for class 'meta':
print(x, sortvar, level=x$level, level.comb=x$level.comb,
        comb.fixed=x$comb.fixed, comb.random=x$comb.random,
        details=FALSE, ma=TRUE, digits=max(4, .Options$digits - 3), ...)## S3 method for class 'metabias':
print(x, ...)
## S3 method for class 'meta':
summary(object, byvar=object$byvar,
        bylab=object$bylab, print.byvar=object$print.byvar,
        bystud=FALSE,
        level=object$level, level.comb=object$level.comb,
        comb.fixed=object$comb.fixed, comb.random=object$comb.random,
        warn=TRUE, ...)
## S3 method for class 'summary.meta':
print(x, digits = max(3, .Options$digits - 3),
        print.byvar,
        comb.fixed=x$comb.fixed, comb.random=x$comb.random,
        header=TRUE, ...)
meta, metabias, or
    summary.meta.meta.x$TE).x$TE).print.default.print.byvar is set to TRUE.summary.meta in connection with metacum or
  metainf should result in a warning.summary.meta with the
  following elements:byvar is not missing.byvar is not missing.byvar is not missing.byvar is not missing.byvar is not missing.read.rm5. If a meta-analysis is then conducted using
  function metacr, information on subgroups is available in R
  (components byvar, bylab, and print.byvar,
  byvar in an object of class "meta"). Accordingly, by using function
  metacr there is no need to define subgroups in order to redo
  the statistical analysis conducted in the Cochrane review.Higgins JPT & Thompson SG (2002), Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539--1558.
metabin, metacont, metagendata(Fleiss93cont)
meta1 <- metacont(n.e, mean.e, sd.e, n.c, mean.c, sd.c, data=Fleiss93cont, sm="SMD")
summary(meta1)
summary(meta1, byvar=c(1,2,1,1,2), bylab="group")Run the code above in your browser using DataLab