# (1) Fit of a Weibull distribution to serving size data by maximum
# goodness-of-fit estimation using all the distances available
#
data(groundbeef)
serving <- groundbeef$serving
mgedist(serving,"weibull",gof="CvM")
mgedist(serving,"weibull",gof="KS")
mgedist(serving,"weibull",gof="AD")
mgedist(serving,"weibull",gof="ADR")
mgedist(serving,"weibull",gof="ADL")
mgedist(serving,"weibull",gof="AD2R")
mgedist(serving,"weibull",gof="AD2L")
mgedist(serving,"weibull",gof="AD2")
# (2) Fit of a uniform distribution using Cramer-von Mises or
# Kolmogorov-Smirnov distance
#
u <- runif(100,min=5,max=10)
mgedist(u,"unif",gof="CvM")
mgedist(u,"unif",gof="KS")
# (3) scaling problem
#
x <- c(-0.00707717, -0.000947418, -0.00189753,
-0.000474947, -0.00190205, -0.000476077, 0.00237812, 0.000949668,
0.000474496, 0.00284226, -0.000473149, -0.000473373, 0, 0, 0.00283688,
-0.0037843, -0.0047506, -0.00238379, -0.00286807, 0.000478583,
0.000478354, -0.00143575, 0.00143575, 0.00238835, 0.0042847,
0.00237248, -0.00142281, -0.00142484, 0, 0.00142484, 0.000948767,
0.00378609, -0.000472478, 0.000472478, -0.0014181, 0, -0.000946522,
-0.00284495, 0, 0.00331832, 0.00283554, 0.00141476, -0.00141476,
-0.00188947, 0.00141743, -0.00236351, 0.00236351, 0.00235794,
0.00235239, -0.000940292, -0.0014121, -0.00283019, 0.000472255,
0.000472032, 0.000471809, -0.0014161, 0.0014161, -0.000943842,
0.000472032, -0.000944287, -0.00094518, -0.00189304, -0.000473821,
-0.000474046, 0.00331361, -0.000472701, -0.000946074, 0.00141878,
-0.000945627, -0.00189394, -0.00189753, -0.0057143, -0.00143369,
-0.00383326, 0.00143919, 0.000479272, -0.00191847, -0.000480192,
0.000960154, 0.000479731, 0, 0.000479501, 0.000958313, -0.00383878,
-0.00240674, 0.000963391, 0.000962464, -0.00192586, 0.000481812,
-0.00241138, -0.00144963)
#only i == 0, no scaling, should not converge.
for(i in 6:0)
cat(i, try(mgedist(x*10^i,"cauchy")$estimate, silent=TRUE), "")
Run the code above in your browser using DataLab