Perform alternating least squares matrix factorization on a Spark DataFrame.
ml_als_factorization(x, rating.column = "rating", user.column = "user",
item.column = "item", rank = 10L, regularization.parameter = 0.1,
iter.max = 10L, ml.options = ml_options(), ...)
An object coercable to a Spark DataFrame (typically, a
tbl_spark
).
The name of the column containing ratings.
The name of the column containing user IDs.
The name of the column containing item IDs.
Rank of the factorization.
The regularization parameter.
The maximum number of iterations to use.
Optional arguments, used to affect the model generated. See
ml_options
for more details.
Optional arguments; currently unused.
Other Spark ML routines: ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_kmeans
, ml_lda
,
ml_linear_regression
,
ml_logistic_regression
,
ml_multilayer_perceptron
,
ml_naive_bayes
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression