Learn R Programming

sparklyr (version 0.4)

ml_als_factorization: Spark ML -- Alternating Least Squares (ALS) matrix factorization.

Description

Perform alternating least squares matrix factorization on a Spark DataFrame.

Usage

ml_als_factorization(x, rating.column = "rating", user.column = "user",
  item.column = "item", rank = 10L, regularization.parameter = 0.1,
  iter.max = 10L, ml.options = ml_options(), ...)

Arguments

x

An object coercable to a Spark DataFrame (typically, a tbl_spark).

rating.column

The name of the column containing ratings.

user.column

The name of the column containing user IDs.

item.column

The name of the column containing item IDs.

rank

Rank of the factorization.

regularization.parameter

The regularization parameter.

iter.max

The maximum number of iterations to use.

ml.options

Optional arguments, used to affect the model generated. See ml_options for more details.

...

Optional arguments; currently unused.

See Also

Other Spark ML routines: ml_decision_tree, ml_generalized_linear_regression, ml_gradient_boosted_trees, ml_kmeans, ml_lda, ml_linear_regression, ml_logistic_regression, ml_multilayer_perceptron, ml_naive_bayes, ml_one_vs_rest, ml_pca, ml_random_forest, ml_survival_regression