Perform regression or classification using naive bayes.
ml_naive_bayes(x, response, features, lambda = 0, ml.options = ml_options(),
...)
An object coercable to a Spark DataFrame (typically, a
tbl_spark
).
The name of the response vector (as a length-one character
vector), or a formula, giving a symbolic description of the model to be
fitted. When response
is a formula, it is used in preference to other
parameters to set the response
, features
, and intercept
parameters (if available). Currently, only simple linear combinations of
existing parameters is supposed; e.g. response ~ feature1 + feature2 + ...
.
The intercept term can be omitted by using - 1
in the model fit.
The name of features (terms) to use for the model fit.
The (Laplace) smoothing parameter. Defaults to zero.
Optional arguments, used to affect the model generated. See
ml_options
for more details.
Optional arguments; currently unused.
Other Spark ML routines: ml_als_factorization
,
ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_kmeans
, ml_lda
,
ml_linear_regression
,
ml_logistic_regression
,
ml_multilayer_perceptron
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression