mstepE( data, z, prior=NULL, warn=NULL, ...)
mstepV( data, z, prior=NULL, warn=NULL, ...)
mstepEII( data, z, prior=NULL, warn=NULL, ...)
mstepVII( data, z, prior=NULL, warn=NULL, ...)
mstepEEI( data, z, prior=NULL, warn=NULL, ...)
mstepVEI( data, z, prior=NULL, warn=NULL, control=NULL, ...)
mstepEVI( data, z, prior=NULL, warn=NULL, ...)
mstepVVI( data, z, prior=NULL, warn=NULL, ...)
mstepEEE( data, z, prior=NULL, warn=NULL, ...)
mstepEEV( data, z, prior=NULL, warn=NULL, ...)
mstepVEV( data, z, prior=NULL, warn=NULL, control=NULL,...)
mstepVVV( data, z, prior=NULL, warn=NULL, ...)[i,k]th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.
In analyses involving noise, this should not include the
conditional probabilities fo.Mclust$warn."VEI" and "VEV"
that have an iterative M-step. This should be a list with components
named itmax and tol. These components can be of length 1
or 2; in the ldo.call.mstep,
me,
estep,
priorControl
emControlmstepVII(data = iris[,-5], z = unmap(iris[,5]))Run the code above in your browser using DataLab