Learn R Programming

BACCO (version 1.0-50)

p.page4: A postiori probability of hyperparameters

Description

Function to determine a postiori probability of hyperparameters $\rho$, $\lambda$ and $\psi_2$, given observations and $\psi_1$.

Usage

p.page4(D1, D2, H1, H2, V, y, z, E.theta, Edash.theta, extractor, include.prior=FALSE,
lognormally.distributed=FALSE, return.log=FALSE, phi)

Arguments

D1
Matrix of code run points
D2
Matrix of observation points
H1
Basis function (vectorized)
H2
Regression function for D2
V
Covariance matrix; default value of NULL results in the function evaluating it (but this takes a long time, so supply V if known)
y
Vector of code outputs
z
Vector of observation values
E.theta
Expectation over theta
Edash.theta
Expectation over theta WRT $E'$
extractor
Function to extract independent variables and parameters from D1
include.prior
Boolean, with TRUE meaning to include the prior PDF for $\theta$ and default value of FALSE meaning to return the likelihood multiplied by an undetermined constant.
lognormally.distributed
Boolean with TRUE meaning to assume lognormality. See prob.psi1 for details.
return.log
Boolean, with default FALSE meaning to return the probability, and TRUE meaning to return the (natural) logarithm of the probability (which is useful when considering very small probabilities).
phi
Hyperparameters

References

M. C. Kennedy and A. O'Hagan 2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society B, 63(3) pp425-464 M. C. Kennedy and A. O'Hagan 2001. Supplementary details on Bayesian calibration of computer models, Internal report, University of Sheffield. Available at http://www.shef.ac.uk/~st1ao/ps/calsup.ps R. K. S. Hankin 2005. Introducing BACCO, an R bundle for Bayesian analysis of computer code output, Journal of Statistical Software, 14(16)

See Also

W2

Examples

Run this code
data(toys)

p.page4(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=NULL, y=y.toy,
z=z.toy,E.theta=E.theta.toy, Edash.theta=Edash.theta.toy, extractor=extractor.toy, phi=phi.toy)

## Now compare the above value with p.page4() calculated with phi
## differing only in psi2:

phi.toy.new <- phi.change(phi.fun=phi.fun.toy, old.phi = phi.toy, psi2=c(8,8,8))

p.page4(D1=D1.toy, D2=D2.toy, H1=H1.toy, H2=H2.toy, V=V.toy, y=y.toy, z=z.toy,
E.theta=E.theta.toy, Edash.theta=Edash.theta.toy,
extractor=extractor.toy, phi=phi.toy.new)
## different!

Run the code above in your browser using DataLab