Learn R Programming

ggRandomForests (version 2.0.1)

plot.gg_interaction: plot.gg_interaction Plot a gg_interaction object,

Description

plot.gg_interaction Plot a gg_interaction object,

Usage

"plot"(x, xvar, lbls, ...)

Arguments

x
gg_interaction object created from a rfsrc object
xvar
variable (or list of variables) of interest.
lbls
A vector of alternative variable names.
...
arguments passed to the gg_interaction function.

Value

ggplot object

References

Breiman L. (2001). Random forests, Machine Learning, 45:5-32.

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.

See Also

rfsrc find.interaction max.subtree var.select vimp plot.gg_interaction

Examples

Run this code
## Not run: 
# ## Examples from randomForestSRC package... 
# ## ------------------------------------------------------------
# ## find interactions, classification setting
# ## ------------------------------------------------------------
# ## -------- iris data
# ## iris.obj <- rfsrc(Species ~., data = iris)
# ## TODO: VIMP interactions not handled yet....
# ## find.interaction(iris.obj, method = "vimp", nrep = 3)
# ## interaction_iris <- find.interaction(iris.obj)
# data(interaction_iris, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_iris)
# 
# plot(gg_dta, xvar="Petal.Width")
# plot(gg_dta, xvar="Petal.Length")
# plot(gg_dta, panel=TRUE)
# 
# ## ------------------------------------------------------------
# ## find interactions, regression setting
# ## ------------------------------------------------------------
# ## -------- air quality data
# ## airq.obj <- rfsrc(Ozone ~ ., data = airquality)
# ##
# ## TODO: VIMP interactions not handled yet....
# ## find.interaction(airq.obj, method = "vimp", nrep = 3)
# ## interaction_airq <- find.interaction(airq.obj)
# data(interaction_airq, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_airq)
# 
# plot(gg_dta, xvar="Temp")
# plot(gg_dta, xvar="Solar.R")
# plot(gg_dta, panel=TRUE)
# 
# ## -------- Boston data
# data(interaction_Boston, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_Boston)
# 
# plot(gg_dta, panel=TRUE)
# 
# ## -------- mtcars data
# data(interaction_mtcars, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_mtcars)
# 
# plot(gg_dta, panel=TRUE)
# 
# ## ------------------------------------------------------------
# ## find interactions, survival setting
# ## ------------------------------------------------------------
# ## -------- pbc data
# ## data(pbc, package = "randomForestSRC") 
# ## pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, nsplit = 10)
# ## interaction_pbc <- find.interaction(pbc.obj, nvar = 8)
# data(interaction_pbc, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_pbc)
# 
# plot(gg_dta, xvar="bili")
# plot(gg_dta, xvar="copper")
# plot(gg_dta, panel=TRUE)
# 
# ## -------- veteran data
# data(interaction_veteran, package="ggRandomForests")
# gg_dta <- gg_interaction(interaction_veteran)
# 
# plot(gg_dta, panel=TRUE)
# 
# ## End(Not run)

Run the code above in your browser using DataLab