# NOT RUN {
# Basics:
# (1) Plot current freq and prob values:
plot_curve() # default curve plot,
# same as:
# plot_curve(what = c("prev", "PPV", "NPV"))
# hide points and show uncertainty:
plot_curve(show_points = FALSE, uc = .10) # default w/o points, 10% uncertainty range
# (2) Provide local parameters and select curves:
plot_curve(prev = .2, sens = .8, spec = .6, what = c("PPV", "NPV", "acc"), uc = .2)
# All curves: what = ("prev", "PPV", "NPV", "ppod", "acc")
plot_curve(prev = .3, sens = .9, spec = .8, what = "all", col_pal = pal_org) # all curves.
# Selected curves:
plot_curve(what = c("PPV", "NPV")) # PPV and NPV
plot_curve(what = c("prev", "PPV", "NPV", "acc")) # prev, PPV, NPV, and acc
plot_curve(what = c("prev", "PPV", "NPV", "ppod")) # prev, PPV, NPV, and ppod
# Visualizing uncertainty (uc as percentage range):
plot_curve(prev = .3, sens = .9, spec = .8, what = c("prev", "PPV", "NPV"),
uc = .05) # => prev, PPV and NPV with a 5% uncertainty range
plot_curve(prev = .2, sens = .8, spec = .7, what = "all",
uc = .10) # => all with a 10% uncertainty range
# X-axis as linear vs. log scale:
plot_curve(prev = .01, sens = .9, spec = .8) # linear scale
plot_curve(prev = .01, sens = .9, spec = .8, log_scale = TRUE) # log scale
plot_curve(prev = .0001, sens = .7, spec = .6) # linear scale
plot_curve(prev = .0001, sens = .7, spec = .6, log_scale = TRUE) # log scale
# Probability labels:
plot_curve(p_lbl = "abb", what = "all") # abbreviated names
plot_curve(p_lbl = "nam", what = "all") # names only
plot_curve(p_lbl = "num", what = "all") # numeric values only
plot_curve(p_lbl = "namnum", what = "all") # names and values
# Text and color settings:
plot_curve(title_lbl = "Testing tiny text labels", cex_lbl = .60)
plot_curve(title_lbl = "Testing specific colors", uc = .05,
what = "all", what_col = c("grey", "red3", "green3", "blue3", "gold"))
plot_curve(title_lbl = "Testing color palette", uc = .05,
what = "all", col_pal = pal_org)
# }
Run the code above in your browser using DataLab