pls.cv: Model selection for Partial Least Squares based on cross-validation
Description
This function computes the optimal model parameter using cross-validation.
Usage
pls.cv(X, y, k, m,use.kernel=FALSE,compute.covariance=FALSE)
Arguments
X
matrix of predictor observations.
y
vector of response observations. The length of y is the same as the number of rows of X.
k
number of cross-validation splits. Default is 10.
m
maximal number of Partial Least Squares components. Default is m=ncol(X).
use.kernel
Use kernel representation? Default is use.kernel=FALSE.
compute.covariance
If TRUE, the function computes the covariance for the cv-optimal regression coefficients.
Value
The function returns an object of class "plsdof".
cv.errorvector of cross-validated errors
m.optoptimal number of components
interceptintercept
coefficientsvector of regression coefficients
covarianceIf TRUE and use.kernel=FALSE, the covariance of the cv-optimal regression coefficients is returned.
Details
to do
References
Kraemer, N., Sugiyama M. (2010). "The Degrees of Freedom of Partial Least Squares Regression". preprint, http://arxiv.org/abs/1002.4112
Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441 - 448