pls.ic(X, y, m,criterion="bic",naive,use.kernel,compute.jacobian,verbose)
y
is the same as the number of rows of X
.m=ncol(X)
.FALSE
.use.kernel=FALSE
.FALSE
TRUE
, the function prints a warning if the algorithms produce negative Degrees of Freedom. Default is TRUE
.compute.jacobian=TRUE
and use.kernel=FALSE
, the function returns the covariance matrix of the optimal regression coefficients.pls.model
, pls.cv
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
# compute linear PLS
pls.object<-pls.ic(X,y,m=ncol(X))
Run the code above in your browser using DataLab