# Number of albinotic children in families with 5 kids (from Patil, 1962) ,,,,
albinos <- data.frame(y = c(rep(1, 25), rep(2, 23), rep(3, 10), 4, 5),
n = rep(5, 60))
fit1 <- vglm(cbind(y, n-y) ~ 1, posbinomial, albinos, trace = TRUE)
summary(fit1)
Coef(fit1) # = MLE of p = 0.3088
head(fitted(fit1))
sqrt(vcov(fit1, untransform = TRUE)) # SE = 0.0322
# Fit a M_0 model (Otis et al. 1978) to the deermice data ,,,,,,,,,,,,,,,,,,,,,,,
M.0 <- vglm(cbind( y1 + y2 + y3 + y4 + y5 + y6,
6 - y1 - y2 - y3 - y4 - y5 - y6) ~ 1, trace = TRUE,
posbinomial(omit.constant = TRUE), data = deermice)
coef(M.0, matrix = TRUE)
Coef(M.0)
constraints(M.0, matrix = TRUE)
summary(M.0)
c( N.hat = M.0@extra$N.hat, # Since tau = 6, i.e., 6 Bernoulli trials per
SE.N.hat = M.0@extra$SE.N.hat) # observation is the same for each observation
# Compare it to the M_b using AIC and BIC
M.b <- vglm(cbind(y1, y2, y3, y4, y5, y6) ~ 1, trace = TRUE,
posbernoulli.b, data = deermice)
sort(c(M.0 = AIC(M.0), M.b = AIC(M.b))) # Okay since omit.constant = TRUE
sort(c(M.0 = BIC(M.0), M.b = BIC(M.b))) # Okay since omit.constant = TRUE
Run the code above in your browser using DataLab