Learn R Programming

CopulaRegression (version 0.1-5)

ppolicy_loss: Cumaltive distribution function of the policy loss

Description

Cumulative distribution function of the policy loss

Usage

ppolicy_loss(l, mu, delta, lambda, theta, family, y.max = 20,zt=TRUE)

Arguments

l
vector at which the distribution is evaluated
mu
expectation of the Gamma distribution
delta
dispersion parameter of the Gamma distribution
lambda
parameter of the ZTP distribution
theta
copula parameter
family
an integer defining the bivariate copula family: 1 = Gauss, 3 = Clayton, 4=Gumbel, 5=Frank
y.max
upper value of the finite sum that we use to approximate the infinite sum in the density, see below for more details
zt
logical. If zt=TRUE, we use a zero-truncated Poisson variable. Otherwise, we use a Poisson variable. Default is TRUE.

Value

Details

For a Gamma distributed variable X and a (zero truncated) Possion variable Y, the policy loss is defined as $L=X\cdot Y$. Its density is an infinite sum of weighted Gamma densities. The parameter y.max is the upper value of the finite sum that approximates the infinite sum.

References

N. Kraemer, E. Brechmann, D. Silvestrini, C. Czado (2013): Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics 53 (3), 829 - 839.

See Also

epolicy_loss, qpolicy_loss, dpolicy_loss

Examples

Run this code
library(VineCopula)
mu<-1000
delta<-0.09
lambda<-2.5
family<-1
theta<-BiCopTau2Par(tau=0.5,family=family)
l<-seq(1,7000,length=100)
out<-ppolicy_loss(l,mu,delta,lambda,theta,family)
plot(l,out,type="l",lwd=3,xlab="loss",ylab="density")

Run the code above in your browser using DataLab