# NOT RUN {
## binary outcome
library(rms)
set.seed(7)
d <- sampleData(80,outcome="binary")
nd <- sampleData(80,outcome="binary")
fit <- lrm(Y~X1+X8,data=d)
predictRisk(fit,newdata=nd)
# }
# NOT RUN {
library(SuperLearner)
set.seed(1)
sl = SuperLearner(Y = d$Y, X = d[,-1], family = binomial(),
SL.library = c("SL.mean", "SL.glmnet", "SL.randomForest"))
# }
# NOT RUN {
## survival outcome
# generate survival data
library(prodlim)
set.seed(100)
d <- sampleData(100,outcome="survival")
d[,X1:=as.numeric(as.character(X1))]
d[,X2:=as.numeric(as.character(X2))]
# then fit a Cox model
library(rms)
cphmodel <- cph(Surv(time,event)~X1+X2,data=d,surv=TRUE,x=TRUE,y=TRUE)
# or via survival
library(survival)
coxphmodel <- coxph(Surv(time,event)~X1+X2,data=d,x=TRUE,y=TRUE)
# Extract predicted survival probabilities
# at selected time-points:
ttt <- quantile(d$time)
# for selected predictor values:
ndat <- data.frame(X1=c(0.25,0.25,-0.05,0.05),X2=c(0,1,0,1))
# as follows
predictRisk(cphmodel,newdata=ndat,times=ttt)
predictRisk(coxphmodel,newdata=ndat,times=ttt)
# stratified cox model
sfit <- coxph(Surv(time,event)~strata(X1)+X2,data=d,x=TRUE,y=TRUE)
predictRisk(sfit,newdata=d[1:3,],times=c(1,3,5,10))
## simulate learning and validation data
learndat <- sampleData(100,outcome="survival")
valdat <- sampleData(100,outcome="survival")
## use the learning data to fit a Cox model
library(survival)
fitCox <- coxph(Surv(time,event)~X1+X2,data=learndat,x=TRUE,y=TRUE)
## suppose we want to predict the survival probabilities for all subjects
## in the validation data at the following time points:
## 0, 12, 24, 36, 48, 60
psurv <- predictRisk(fitCox,newdata=valdat,times=seq(0,60,12))
## This is a matrix with event probabilities (1-survival)
## one column for each of the 5 time points
## one row for each validation set individual
# Do the same for a randomSurvivalForest model
# library(randomForestSRC)
# rsfmodel <- rfsrc(Surv(time,event)~X1+X2,data=learndat)
# prsfsurv=predictRisk(rsfmodel,newdata=valdat,times=seq(0,60,12))
# plot(psurv,prsfsurv)
## Cox with ridge option
f1 <- coxph(Surv(time,event)~X1+X2,data=learndat,x=TRUE,y=TRUE)
f2 <- coxph(Surv(time,event)~ridge(X1)+ridge(X2),data=learndat,x=TRUE,y=TRUE)
# }
# NOT RUN {
plot(predictRisk(f1,newdata=valdat,times=10),
riskRegression:::predictRisk.coxph(f2,newdata=valdat,times=10),
xlim=c(0,1),
ylim=c(0,1),
xlab="Unpenalized predicted survival chance at 10",
ylab="Ridge predicted survival chance at 10")
# }
# NOT RUN {
## competing risks
library(survival)
library(riskRegression)
library(prodlim)
train <- prodlim::SimCompRisk(100)
test <- prodlim::SimCompRisk(10)
cox.fit <- CSC(Hist(time,cause)~X1+X2,data=train)
predictRisk(cox.fit,newdata=test,times=seq(1:10),cause=1)
## with strata
cox.fit2 <- CSC(list(Hist(time,cause)~strata(X1)+X2,Hist(time,cause)~X1+X2),data=train)
predictRisk(cox.fit2,newdata=test,times=seq(1:10),cause=1)
# }
Run the code above in your browser using DataLab