The Rq
function is the rms
front-end to the
quantreg
package's rq
function. print
and
latex
methods are also provided, and a fitting function
RqFit
is defined for use in bootstrapping, etc. Its result is a
function definition.
For the print
method, format of output is controlled by the
user previously running options(prType="lang")
where
lang
is "plain"
(the default), "latex"
, or
"html"
. For the latex
method, html
will actually
be used of options(prType='html')
. When using html with Quarto
or RMarkdown, results='asis'
need not be written in the chunk header.
Rq(formula, tau = 0.5, data=environment(formula),
subset, weights, na.action=na.delete,
method = "br", model = FALSE, contrasts = NULL,
se = "nid", hs = TRUE, x = FALSE, y = FALSE, ...)# S3 method for Rq
print(x, digits=4, coefs=TRUE, title, ...)
# S3 method for Rq
latex(object,
file = '', append=FALSE,
which, varnames, columns=65, inline=FALSE, caption=NULL, ...)
# S3 method for Rq
predict(object, ..., kint=1, se.fit=FALSE)
RqFit(fit, wallow=TRUE, passdots=FALSE)
Rq
returns a list of class "rms", "lassorq"
or "scadrq",
"Rq"
, and "rq"
. RqFit
returns a function
definition. latex.Rq
returns an object of class "latex"
.
model formula
the single quantile to estimate. Unlike rq
you cannot estimate
more than one quantile at one model fitting.
see
rq
set to TRUE
to store the design matrix with the fit.
For print
is an Rq
object.
set to TRUE
to store the response vector with the fit
other arguments passed to one of the rq
fitting routines.
For latex.Rq
these are optional arguments passed to
latexrms
. Ignored for print.Rq
. For
predict.Rq
this is usually just a newdata
argument.
number of significant digits used in formatting results in
print.Rq
.
specify coefs=FALSE
to suppress printing the table
of model coefficients, standard errors, etc. Specify coefs=n
to print only the first n
regression coefficients in the
model.
a character string title to be passed to prModFit
an object created by Rq
see
latexrms
ignored
set to TRUE
to obtain standard errors of
predicted quantiles
an object created by Rq
set to TRUE
if weights
are allowed in the
current context.
set to TRUE
if ... may be passed to the fitter
Frank Harrell
rq
, prModFit
, orm
if (FALSE) {
set.seed(1)
n <- 100
x1 <- rnorm(n)
y <- exp(x1 + rnorm(n)/4)
dd <- datadist(x1); options(datadist='dd')
fq2 <- Rq(y ~ pol(x1,2))
anova(fq2)
fq3 <- Rq(y ~ pol(x1,2), tau=.75)
anova(fq3)
pq2 <- Predict(fq2, x1)
pq3 <- Predict(fq3, x1)
p <- rbind(Median=pq2, Q3=pq3)
plot(p, ~ x1 | .set.)
# For superpositioning, with true curves superimposed
a <- function(x, y, ...) {
x <- unique(x)
col <- trellis.par.get('superpose.line')$col
llines(x, exp(x), col=col[1], lty=2)
llines(x, exp(x + qnorm(.75)/4), col=col[2], lty=2)
}
plot(p, addpanel=a)
}
Run the code above in your browser using DataLab