# NOT RUN {
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####
data(DT_example)
DT <- DT_example
head(DT)
####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####
## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,
random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)
summary(ans1)
####===========================================####
#### Univariate heterogeneous variance models ####
####===========================================####
## Compound simmetry (CS) + Diagonal (DIAG) model
ans2 <- mmer(Yield~Env,
random= ~Name + vs(ds(Env),Name),
rcov= ~ vs(ds(Env),units),
data=DT)
summary(ans2)
####===========================================####
#### Univariate unstructured variance models ####
####===========================================####
ans3 <- mmer(Yield~Env,
random=~ vs(us(Env),Name),
rcov=~vs(us(Env),units),
data=DT)
summary(ans3)
# ####==========================================####
# #### Multivariate homogeneous variance models ####
# ####==========================================####
#
# ## Multivariate Compound simmetry (CS) model
# DT$EnvName <- paste(DT$Env,DT$Name)
# ans4 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(Name, Gtc = unsm(2)) + vs(EnvName,Gtc = unsm(2)),
# rcov= ~ vs(units, Gtc = unsm(2)),
# data=DT)
# summary(ans4)
#
# ####=============================================####
# #### Multivariate heterogeneous variance models ####
# ####=============================================####
#
# ## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model
# ans5 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(Name, Gtc = unsm(2)) + vs(ds(Env),Name, Gtc = unsm(2)),
# rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
# data=DT)
# summary(ans5)
#
# ####===========================================####
# #### Multivariate unstructured variance models ####
# ####===========================================####
#
# ans6 <- mmer(cbind(Yield, Weight) ~ Env,
# random= ~ vs(us(Env),Name, Gtc = unsm(2)),
# rcov= ~ vs(ds(Env),units, Gtc = unsm(2)),
# data=DT)
# summary(ans6)
# }
Run the code above in your browser using DataLab