library(gdata) # for nobs()
data(exp.sd)
# Histogram of the standard deviations
hist(exp.sd,n=20, col="cyan", border="blue", main="",
xlab="Standard Deviation (for data on the log scale)")
dens <- density(exp.sd)
lines(dens$x, dens$y*par("usr")[4]/max(dens$y),col="red",lwd=2)
title("Histogram of Standard Deviations")
# 1) What is the power if using 6 patients 3 measurements assuming
# Delta=1.0, Alpha=0.05 and Observed SDs?
#
n=6; fold.change=2.0; power=0.8; sig.level=0.05;
#
all.power <- pow(sd=exp.sd, n=n, delta=log2(fold.change),
sig.level=sig.level)
power.plot(all.power, lwd=2, col="blue")
xmax <- par("usr")[2]-0.05; ymax <- par("usr")[4]-0.05
legend(x=xmax, y=ymax,
legend= strsplit( paste("n=",n,",",
"fold change=",fold.change,",",
"alpha=", sig.level, ",",
"# genes=", nobs(exp.sd), sep=''), "," )[[1]],
xjust=1, yjust=1, cex=1.0)
title("Power to Detect 2-Fold Change")
# 2) What is necessary sample size for 80% power using 3 measurements/patient
# assuming Delta=1.0, Alpha=0.05 and Observed SDs?
#
all.size <- ssize(sd=exp.sd, delta=log2(fold.change),
sig.level=sig.level, power=power)
ssize.plot(all.size, lwd=2, col="magenta", xlim=c(1,20))
xmax <- par("usr")[2]-1; ymin <- par("usr")[3] + 0.05
legend(x=xmax, y=ymin,
legend= strsplit( paste("fold change=",fold.change,",",
"alpha=", sig.level, ",",
"power=",power,",",
"# genes=", nobs(exp.sd), sep=''), "," )[[1]],
xjust=1, yjust=0, cex=1.0)
title("Sample Size to Detect 2-Fold Change")
# 3) What is necessary fold change to achieve 80% power using 3
# measurements/patient assuming n=6, Delta=1.0, Alpha=0.05 and Observed
# SDs?
#
all.delta <- delta(sd=exp.sd, power=power, n=n,
sig.level=sig.level)
delta.plot(all.delta, lwd=2, col="magenta", xlim=c(1,10))
xmax <- par("usr")[2]-1; ymin <- par("usr")[3] + 0.05
legend(x=xmax, y=ymin,
legend= strsplit( paste("n=",n,",",
"alpha=", sig.level, ",",
"power=",power,",",
"# genes=", nobs(exp.sd), sep=''), "," )[[1]],
xjust=1, yjust=0, cex=1.0)
title("Fold Change to Achieve 80% Power")
Run the code above in your browser using DataLab