Learn R Programming

quanteda (version 1.3.0)

textmodel_wordscores: Wordscores text model

Description

textmodel_wordscores implements Laver, Benoit and Garry's (2003) "Wordscores" method for scaling texts on a single dimension, given a set of anchoring or reference texts whose values are set through reference scores. This scale can be fitted in the linear space (as per LBG 2003) or in the logit space (as per Beauchamp 2012). Estimates of virgin or unknown texts are obtained using the predict() method to score documents from a fitted textmodel_wordscores object.

Usage

textmodel_wordscores(x, y, scale = c("linear", "logit"), smooth = 0)

Arguments

x

the dfm on which the model will be trained

y

vector of training scores associated with each document in x

scale

scale on which to score the words; "linear" for classic LBG linear posterior weighted word class differences, or "logit" for log posterior differences

smooth

a smoothing parameter for word counts; defaults to zero for the to match the LBG (2003) method.

Details

The textmodel_wordscores() function and the associated predict() method are designed to function in the same manner as predict.lm. coef() can also be used to extract the word coefficients from the fitted textmodel_wordscores object, and summary() will print a nice summary of the fitted object.

References

Laver, Michael, Kenneth R Benoit, and John Garry. 2003. "Extracting Policy Positions From Political Texts Using Words as Data." American Political Science Review 97(02): 311-31

Beauchamp, N. 2012. "Using Text to Scale Legislatures with Uninformative Voting." New York University Mimeo.

Martin, L W, and G Vanberg. 2007. "A Robust Transformation Procedure for Interpreting Political Text." Political Analysis 16(1): 93-100.

See Also

predict.textmodel_wordscores for methods of applying a fitted textmodel_wordscores model object to predict quantities from (other) documents.

Examples

Run this code
# NOT RUN {
(ws <- textmodel_wordscores(data_dfm_lbgexample, c(seq(-1.5, 1.5, .75), NA)))
summary(ws)
coef(ws)
predict(ws)
predict(ws, rescaling = "lbg")
predict(ws, se.fit = TRUE, interval = "confidence", rescaling = "mv")
# }

Run the code above in your browser using DataLab