
Testing causal claims is often difficult due to an inability to conduct experimental randomization of traits and situations to people. When twins are available, even when measured on a single occasion, the pattern of cross-twin cross-trait correlations can (given distinguishable modes of inheritance for the two traits) falsify causal hypotheses.
umxDoC
implements a 2-group model to form latent variables for each of two traits, and allows testing whether
trait 1 causes trait 2, vice-versa, or even reciprocal causation.
The following figure shows how the DoC model appears as a path diagram (for two latent variables X and Y, each with three indicators). Note: For pedagogical reasons, only the model for 1 twin is shown, and only one DoC pathway drawn.
umxDoC(
name = "DoC",
var1Indicators,
var2Indicators,
mzData = NULL,
dzData = NULL,
sep = "_T",
causal = TRUE,
autoRun = getOption("umx_auto_run"),
intervals = FALSE,
tryHard = c("no", "yes", "ordinal", "search"),
optimizer = NULL
)
The name of the model (defaults to "DOC").
variables defining latent trait 1
variables defining latent trait 2
The MZ dataframe
The DZ dataframe
The separator in twin variable names, default = "_T", e.g. "dep_T1".
whether to add the causal paths (default TRUE)
Whether to run the model (default), or just to create it and return without running.
Whether to run mxCI confidence intervals (default = FALSE)
Default ('no') uses normal mxRun. "yes" uses mxTryHard. Other options: "ordinal", "search"
Optionally set the optimizer (default NULL does nothing).
mxModel()
of subclass MxModelDoC
To be added.
N.A. Gillespie and N.G. Martin (2005). Direction of Causation Models. In Encyclopedia of Statistics in Behavioral Science, 1. 496<U+2013>499. Eds. Brian S. Everitt & David C. Howell.
Other Twin Modeling Functions:
plot.MxModelTwinMaker()
,
power.ACE.test()
,
umxACEcov()
,
umxACEv()
,
umxACE()
,
umxCP()
,
umxDoCp()
,
umxGxE_window()
,
umxGxEbiv()
,
umxGxE()
,
umxIP()
,
umxRotate.MxModelCP()
,
umxSexLim()
,
umxSimplex()
,
umx
# NOT RUN {
# ========================
# = Does Rain cause Mud? =
# ========================
# =======================================
# = 2. Define manifests for var 1 and 2 =
# =======================================
var1 = paste0("varA", 1:3)
var2 = paste0("varB", 1:3)
# ================
# = 1. Load Data =
# ================
data(docData)
docData = umx_scale_wide_twin_data(c(var1, var2), docData, sep= "_T")
mzData = subset(docData, zygosity %in% c("MZFF", "MZMM"))
dzData = subset(docData, zygosity %in% c("DZFF", "DZMM"))
# =======================================================
# = 2. Make the non-causal (Cholesky) and causal models =
# =======================================================
Chol = umxDoC(var1= var1, var2= var2, mzData= mzData, dzData= dzData, causal= FALSE)
DoC = umxDoC(var1= var1, var2= var2, mzData= mzData, dzData= dzData, causal= TRUE)
# ================================================
# = Make the directional models by modifying DoC =
# ================================================
a2b = umxModify(DoC, "a2b", free = TRUE, name = "a2b"); summary(a2b)
b2a = umxModify(DoC, "b2a", free = TRUE, name = "b2a"); summary(b2a)
Recip = umxModify(DoC, c("a2b", "b2a"), free = TRUE, name = "Recip"); summary(Recip)
var1 = paste0("SOS", 1:8)
var2 = paste0("Vocab", 1:10)
Chol = umxDoC(var1= var1, var2= var2,mzData= mzData, dzData= dzData, causal= FALSE)
DoC = umxDoC(var1= var1, var2= var2, mzData= mzData, dzData= dzData, causal= TRUE)
a2b = umxModify(DoC, "a2b", free = TRUE, name = "a2b")
b2a = umxModify(DoC, "b2a", free = TRUE, name = "b2a")
Recip= umxModify(DoC, c("a2b", "b2a"), free = TRUE, name = "Recip")
umxCompare(Chol, c(a2b, b2a, Recip))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab