Learn R Programming

umx (version 4.0.0)

umxRotate.MxModelCP: Rotate a CP solution

Description

Rotate a CP solution. Should work with rotations provided in library("GPArotation") and library("psych"), e.g

Orthogonal: "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor"

Oblique: "Promax", "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin" and "cluster"

Usage

# S3 method for MxModelCP
umxRotate(
  model,
  rotation = c("varimax", "promax"),
  tryHard = "yes",
  freeLoadingsAfter = TRUE,
  verbose = TRUE
)

Arguments

model

a umxCP() model to rotate.

rotation

name of the rotation.

tryHard

Default ("yes") is to tryHard.

freeLoadingsAfter

return the model with factor loadings free (default) or fixed in the new locations.

verbose

print detail about the rotation

Value

  • Rotated solution.

Details

This works by taking the common-pathways loadings matrix from a solved umxCP() model, rotating these, placing them back into the loadings matrix, re-estimating the model with the parameters fixed at this rotation, then return the new model.

See Also

Other Twin Modeling Functions: plot.MxModelTwinMaker(), power.ACE.test(), umxACEcov(), umxACEv(), umxACE(), umxCP(), umxDoCp(), umxDoC(), umxGxE_window(), umxGxEbiv(), umxGxE(), umxIP(), umxSexLim(), umxSimplex(), umx

Examples

Run this code
# NOT RUN {
# Rotate a CP solution(param)
# Common pathway model rotation
# }
# NOT RUN {
library(umx)
# Fit 3 factor CPM
data(GFF)
selDVs = c("gff", "fc", "qol", "hap", "sat", "AD") 
m1 = umxCP(selDVs = selDVs, nFac = 2, data = data, tryHard = "yes")
m2 = umxRotate(m1, rotation = "varimax",  tryHard = "yes")

# }

Run the code above in your browser using DataLab