Learn R Programming

umx (version 4.0.0)

umxHetCor: Create a matrix of correlations for variables of diverse types (binary, ordinal, continuous)

Description

umxHetCor is a helper to:

  1. return just the correlations from John Fox's polycor::hetcor function

  2. If you give it a covariance matrix, return the nearest positive-definite correlation matrix.

Usage

umxHetCor(
  data,
  ML = FALSE,
  use = c("pairwise.complete.obs", "complete.obs"),
  treatAllAsFactor = FALSE,
  verbose = FALSE,
  return = c("correlations", "hetcor object"),
  std.err = FALSE
)

Arguments

data

A data.frame() of columns for which to compute heterochoric correlations. OR an existing covariance matrix.

ML

Whether to use Maximum likelihood computation of correlations (default = FALSE)

use

How to handle missing data: Default= "pairwise.complete.obs". Alternative ="complete.obs".

treatAllAsFactor

Whether to treat all columns as factors, whether they are or not (Default = FALSE)

verbose

How much to tell the user about what was done.

return

Return just the correlations (default) or the hetcor object (contains, method, SEs etc.)

std.err

Compute the SEs? (default = FALSE)

Value

  • A matrix of correlations

See Also

Other Data Functions: umxFactor(), umx_as_numeric(), umx_cont_2_quantiles(), umx_lower2full(), umx_make_MR_data(), umx_make_TwinData(), umx_make_fake_data(), umx_make_raw_from_cov(), umx_polychoric(), umx_polypairwise(), umx_polytriowise(), umx_read_lower(), umx_rename(), umx_reorder(), umx_select_valid(), umx_stack(), umx

Other Miscellaneous Stats Helpers: FishersMethod(), SE_from_p(), oddsratio(), reliability(), umxCov2cor(), umxWeightedAIC(), umx_apply(), umx_cor(), umx_means(), umx_r_test(), umx_round(), umx_scale(), umx_var(), umx

Examples

Run this code
# NOT RUN {
umxHetCor(mtcars[,c("mpg", "am")])
umxHetCor(mtcars[,c("mpg", "am")], treatAllAsFactor = TRUE, verbose = TRUE)
# }

Run the code above in your browser using DataLab