Learn R Programming

umx (version 4.0.0)

umx_cont_2_quantiles: umx_cont_2_quantiles

Description

Recode a continuous variable into n-quantiles (default = deciles (10 levels)). It returns an mxFactor(), with the levels labeled with the max value in each quantile (i.e., open on the left-side). quantiles are labeled "quantile1" "quantile2" etc.

Usage

umx_cont_2_quantiles(
  x,
  nlevels = NULL,
  type = c("mxFactor", "ordered", "unordered"),
  verbose = FALSE,
  returnCutpoints = FALSE
)

Arguments

x

a variable to recode as ordinal (email maintainer("umx") if you'd like this upgraded to handle df input)

nlevels

How many bins or levels (at most) to use (i.e., 10 = deciles)

type

what to return (Default is "mxFactor") options: "ordered" and "unordered")

verbose

report the min, max, and decile cuts used (default = FALSE)

returnCutpoints

just return the cutpoints, for use directly

Value

Details

Note: Redundant quantiles are merged. i.e., if the same score identifies all deciles up to the fourth, then these will be merged into one bin, labeled "quantile4".

References

See Also

Other Data Functions: umxFactor(), umxHetCor(), umx_as_numeric(), umx_lower2full(), umx_make_MR_data(), umx_make_TwinData(), umx_make_fake_data(), umx_make_raw_from_cov(), umx_polychoric(), umx_polypairwise(), umx_polytriowise(), umx_read_lower(), umx_rename(), umx_reorder(), umx_select_valid(), umx_stack(), umx

Examples

Run this code
# NOT RUN {
x = umx_cont_2_quantiles(rnorm(1000), nlevels = 10, verbose = TRUE)
x = data.frame(x)
str(x); levels(x)
table(x)
# }
# NOT RUN {
ggplot2::qplot(x$x)
y = mxDataWLS(x, type = "WLS")
# }
# NOT RUN {
# ===========================
# = Use with twin variables =
# ===========================

data(twinData)
x = twinData
cuts  = umx_cont_2_quantiles(rbind(x$wt1, x$wt2) , nlevels = 10, returnCutpoints = TRUE)
x$wt1 = umx_cont_2_quantiles(x$wt1, nlevels = cuts) # use same for both...
x$wt2 = umx_cont_2_quantiles(x$wt2, nlevels = cuts) # use same for both...
str(x[, c("wt1", "wt2")])

# More examples

x = umx_cont_2_quantiles(mtcars[, "mpg"], nlevels = 5) # quintiles
x = umx2ord(mtcars[, "mpg"], nlevels = 5) # using shorter alias
x = umx_cont_2_quantiles(mtcars[, "cyl"], nlevels = 10) # more levels than integers exist
x = umx_cont_2_quantiles(rbinom(10000, 1, .5), nlevels = 2)
# }

Run the code above in your browser using DataLab