This function can perform model reduction for umxGxE()
models,
testing dropping a,c
& e, as well as c & c
, a & a` etc.
It reports the results in a table. Set the format of the table with
umx_set_table_format()
. Or set report = "html"
to open a
table for pasting into a word processor.
In addition to printing a table, the function returns the preferred model.
umxReduceGxE(
model,
report = c("markdown", "inline", "html", "report"),
baseFileName = "tmp_gxe",
tryHard = c("no", "yes", "ordinal", "search"),
...
)
An mxModel()
to reduce.
How to report the results. "html" = open in browser.
(optional) custom filename for html output (defaults to "tmp").
Default ('no') uses normal mxRun. "yes" uses mxTryHard. Other options: "ordinal", "search"
Other parameters to control model summary.
best model
Wagenmakers, E.J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, 192-196. 10.3758/BF03206482.
Other Twin Modeling Functions:
power.ACE.test()
,
umxACEcov()
,
umxACEv()
,
umxACE()
,
umxCP()
,
umxDoCp()
,
umxDoC()
,
umxGxE_window()
,
umxGxEbiv()
,
umxGxE()
,
umxIP()
,
umxReduceACE()
,
umxReduce()
,
umxRotate.MxModelCP()
,
umxSexLim()
,
umxSimplex()
,
umxSummarizeTwinData()
,
umxSummaryACEv()
,
umxSummaryACE()
,
umxSummaryDoC()
,
umxSummaryGxEbiv()
,
umxSummarySexLim()
,
umxSummarySimplex()
,
umxTwinMaker()
,
umx
# NOT RUN {
model = umxReduce(model)
# }
Run the code above in your browser using DataLab