wle.onestep(formula, data=list(), model=TRUE, x=FALSE, y=FALSE, ini.param, ini.scale, raf="HD", smooth=0.031, num.step=1, contrasts=NULL, verbose=FALSE)
wle.stepwise
is called from.TRUE
the corresponding components of the fit (the model frame, the model matrix, the
response.)raf="HD"
: Hellinger Distance RAF,
raf="NED"
: Negative Exponential Disparity RAF,
raf="SCHI2"
: Symmetric Chi-Squared Disparity RAF.
contrasts.arg
of model.matrix.default
.TRUE
warnings are printed.wle.onestep
returns an object of class
"wle.onestep"
.Only print method is implemented for this class.The object returned by wle.onestep
are:model=TRUE
a matrix with first column the dependent variable and the remain column the explanatory variables for the full model.x=TRUE
a matrix with the explanatory variables for the full model.y=TRUE
a vector with the dependent variable.Agostinelli, C., (1997) A one-step robust estimator based on the weighted likelihood methodology, Working Paper n. 1997.16, Department of Statistics, University of Padova.
Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.
Agostinelli, C., Markatou, M., (1998) A one-step robust estimator for regression based on the weighted likelihood reweighting scheme, Statistics \& Probability Letters, Vol. 37, n. 4, 341-350.
Agostinelli, C., (1998) Verosimiglianza pesata nel modello di regressione lineare, XXXIX Riunione scientifica della Societ\`a Italiana di Statistica, Sorrento 1998.
#library(wle)
#library(lqs)
#data(artificial)
#result.lts <- lqs(y.artificial~x.artificial,
# method = "lts")
#result.wle <- wle.onestep(y.artificial~x.artificial,
# ini.param=result.lts$coefficients,
# ini.scale=result.lts$scale[1])
#result.wle
Run the code above in your browser using DataLab