Learn R Programming

wle (version 0.9-91)

wle.onestep: A One-Step Weighted Likelihood Estimator for Linear model

Description

This function evaluate the One-step weighted likelihood estimator for the regression and scale parameters.

Usage

wle.onestep(formula, data=list(), model=TRUE, x=FALSE, y=FALSE, ini.param, ini.scale, raf="HD", smooth=0.031, num.step=1, contrasts=NULL, verbose=FALSE)

Arguments

formula
a symbolic description of the model to be fit. The details of model specification are given below.
data
an optional data frame containing the variables in the model. By default the variables are taken from the environment which wle.stepwise is called from.
model, x, y
logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response.)
ini.param
starting values for the coefficients.
ini.scale
starting values for the scale parameters.
raf
type of Residual adjustment function to be use:

raf="HD": Hellinger Distance RAF,

raf="NED": Negative Exponential Disparity RAF,

raf="SCHI2": Symmetric Chi-Squared Disparity RAF.

smooth
the value of the smoothing parameter.
num.step
number of the steps.
contrasts
an optional list. See the contrasts.arg of model.matrix.default.
verbose
if TRUE warnings are printed.

Value

wle.onestep returns an object of class "wle.onestep".Only print method is implemented for this class.The object returned by wle.onestep are:
coefficients
the parameters estimator.
standard.error
an estimation of the standard error of the parameters estimator.
scale
an estimation of the error scale.
residuals
the unweighted residuals from the estimated model.
fitted.values
the fitted values from the estimated model.
tot.weights
the sum of the weights divide by the number of observations.
weights
the weights associated to each observation.
f.density
the non-parametric density estimation.
m.density
the smoothed model.
delta
the Pearson residuals.
call
the match.call().
contrasts
xlevels
terms
the model frame.
model
if model=TRUE a matrix with first column the dependent variable and the remain column the explanatory variables for the full model.
x
if x=TRUE a matrix with the explanatory variables for the full model.
y
if y=TRUE a vector with the dependent variable.

References

Agostinelli, C., (1997) A one-step robust estimator based on the weighted likelihood methodology, Working Paper n. 1997.16, Department of Statistics, University of Padova.

Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D Thesis, Department of Statistics, University of Padova.

Agostinelli, C., Markatou, M., (1998) A one-step robust estimator for regression based on the weighted likelihood reweighting scheme, Statistics \& Probability Letters, Vol. 37, n. 4, 341-350.

Agostinelli, C., (1998) Verosimiglianza pesata nel modello di regressione lineare, XXXIX Riunione scientifica della Societ\`a Italiana di Statistica, Sorrento 1998.

See Also

wle.smooth an algorithm to choose the smoothing parameter for normal distribution and normal kernel, wle.lm a function for estimating linear models with normal distribution error and normal kernel.

Examples

Run this code
#library(wle)
#library(lqs)

#data(artificial)

#result.lts <- lqs(y.artificial~x.artificial, 
#                 method = "lts")

#result.wle <- wle.onestep(y.artificial~x.artificial,
#               ini.param=result.lts$coefficients,
#               ini.scale=result.lts$scale[1])

#result.wle

Run the code above in your browser using DataLab