Rdocumentation
powered by
Learn R Programming
wle (version 0.9-91)
Weighted Likelihood Estimation
Description
Approach to the robustness via Weighted Likelihood.
Copy Link
Link to current version
Version
Version
0.9-91
0.9-9
0.9-7
0.9-4
0.9-3
0.9-2
0.9-1
0.8-1
0.7-9
0.7-8
0.7-7
0.7-6
0.7-5
0.7-4
0.7-3
0.7-2
0.6-1
0.5
0.4
0.2
Install
install.packages('wle')
Monthly Downloads
269
Version
0.9-91
License
GPL-2
Maintainer
Claudio Agostinelli
Last Published
October 18th, 2015
Functions in wle (0.9-91)
Search all functions
mle.aic
Akaike Information Criterion
selection
Selection's Data
rocky
Rockwell hardness, 100 coils produced in sequence at a Chicago Steel Mill Data
mle.cv
Cross Validation Selection Method
binary
Convert decimal base number to binary base
wle.aic.ar
Weighted Akaike Information Criterion for AR models
plot.wle.lm
Plots for the Linear Model
mle.cp
Mallows Cp
mle.cv.summaries
Summaries and methods for mle.cv
residualsAnscombe
Anscombe residuals
wle.aic.ar.summaries
Summaries and methods for wle.aic.ar
mde.vonmises
von Mises Minimum Distance Estimates
plot.wle.cp
Plot the Weighted Mallows Cp
summary.wle.glm
Summarizing Generalized Linear Model Robust Fits
wle.stepwise
Weighted Stepwise, Backward and Forward selection methods
wle.cv.summaries
Summaries and methods for wle.cv
wle.binomial
Robust Estimation in the Binomial Model
mle.aic.summaries
Summaries and methods for mle.aic
wle.glm.control
Auxiliary for Controlling GLM Robust Fitting
wle.lm
Fitting Linear Models using Weighted Likelihood
wle.cv
Model Selection by Weighted Cross-Validation
wle.aic.summaries
Summaries and methods for wle.aic
wle.lm.summaries
Accessing Linear Model Fits for wle.lm
plot.mle.cp
Plot the Mallows Cp
hald
Hald Data
wle.normal.multi
Robust Estimation in the Normal Multivariate Model
wle.gamma
Robust Estimation in the Gamma model
wle.wrappednormal
Wrapped Normal Weighted Likelihood Estimates
wle.negativebinomial
Robust Estimation in the Negative Binomial Model
wle.glm.summaries
Accessing Generalized Linear Model Robust Fits
mle.cp.summaries
Summaries and methods for mle.cp
artificial
Hawkins, Bradu, Kass's Artificial Data
wle.smooth
Bandwidth selection for the normal kernel and normal model.
wle.t.test
Weighted Likelihood Student's t-Test
wle.normal.multi.summaries
Summaries and methods for wle.normal.multi
cavendish
Cavendish's determinations of the mean density of the earth Data
wle.normal.mixture
Robust Estimation in the Normal Mixture Model
wle.stepwise.summaries
Accessing summaries for wle.stepwise
mde.wrappednormal
Wrapped Normal Minimum Distance Estimates
wle.onestep
A One-Step Weighted Likelihood Estimator for Linear model
wle.cp.summaries
Summaries and methods for wle.cp
mle.stepwise.summaries
Accessing summaries for mle.stepwise
wle.weights
Weights based on Weighted Likelihood for the normal model
wle.glm.weights
Weights based on Weighted Likelihood for the GLM model
anova.wle.glm.root
Robust Analysis of Deviance for Generalized Linear Model Fits
wle.aic
Weighted Akaike Information Criterion
wle.fracdiff
Fit Fractional Models to Time Series - Preliminary Version
wle.onestep.summaries
Summaries and methods for wle.onestep
wle.glm
Robust Fitting Generalized Linear Models using Weighted Likelihood
wle.normal
Robust Estimation in the Normal Model
wle.var.test
Weighted F Test to Compare Two Variances
wle.normal.summaries
Summaries and methods for wle.normal
mle.stepwise
Stepwise, Backward and Forward selection methods
extractRoot
Extract a Root from a result of a wle function
wle.ar
Fit Autoregressive Models to Time Series - Preliminary Version
wle.cp
Weighted Mallows Cp
wle.vonmises
von Mises Weighted Likelihood Estimates
wle.poisson
Robust Estimation in the Poisson Model